제 2 교시

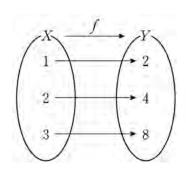
수학 영역(나형)

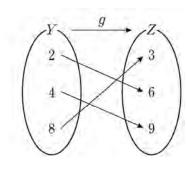
5지선다형

- 1. $3 \times 27^{\frac{1}{3}}$ 의 값은? [2점]

- ① 3 ② 6 ③ 9 ④ 12
- ⑤ 15

2. 두 집합


$$A = \{1, 2\}, B = \{1, 2, 4\}$$


에 대하여 집합 $A \cup B$ 의 모든 원소의 합은? [2점]

- ① 4 ② 5 ③ 6 ④ 7 ⑤ 8

- 3. $\lim_{n\to\infty} \frac{8^{n+1}-4^n}{8^n+3}$ 의 값은? [2점]
- ① 6 ② 8 ③ 10
- 4 12

4. 그림은 두 함수 $f: X \rightarrow Y, g: Y \rightarrow Z$ 를 나타낸 것이다.

(g ∘ f)(1)의 값은? [3점]

- ① 3 ② 4 ③ 6
 - **4** 8
- ⑤ 9

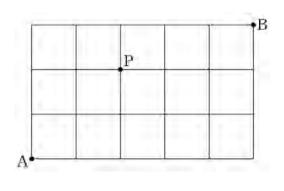
5. 두 사건 A와 B는 서로 독립이고

$$P(A) = \frac{2}{3}, P(A \cap B) = \frac{1}{9}$$

일 때, P(B)의 값은? [3점]

- ① $\frac{1}{6}$ ② $\frac{1}{3}$ ③ $\frac{1}{2}$ ④ $\frac{2}{3}$ ⑤ $\frac{5}{6}$

6. 실수 x에 대한 두 조건


$$p: x^2+2x-a=0, q: x-3=0$$

에 대하여 p가 q이기 위한 필요조건이 되도록 하는 상수 a의 값은? [3점]

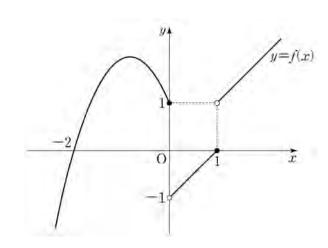
- ① 15
- 2 12 3 9 4 6

- ⑤ 3

7. 그림과 같이 직사각형 모양으로 연결된 도로망이 있다. 이 도로망을 따라 A 지점에서 출발하여 P 지점을 지나 B지점까지 최단거리로 가는 경우의 수는? [3점]

- ① 16
- 2 18
- 3 20
- **4** 22
- (5) 24

8. 자연수 8을 4개의 자연수로 분할하는 방법의 수는? [3점]


- ① 3
- 2 5
- 3 7
- **4** 9
- ⑤ 11

10. 닫힌 구간 [-1, 3]에서 함수 $f(x) = x^3 - 3x + 5$ 의 최솟값은? [3점]

- ① 1 ② 2
- ③ 3
- 4

⑤ 5

9. 함수 y = f(x)의 그래프가 그림과 같다.

 $\lim_{x\to 0-} f(x) + \lim_{x\to 1+} f(x)$ 의 값은? [3점]

- (1) -2
- (2) -1
- ③ 0
- **4** 1
- **⑤** 2

11. 두 함수

$$f(x) = x^3 + 1$$
, $g(x) = x - 4$

에 대하여 $(g^{-1} \circ f)(-1)$ 의 값은? [3점]

- ① 1 ② 2 ③ 3 ④ 4

⑤ 5

12. 실수 a에 대하여 명제

'
$$a \geq \sqrt{3}$$
 이면 $a^2 \geq 3$ 이다.'

- 의 대우는? [3점]
- ① $a^2 < 3$ 이면 $a > \sqrt{3}$ 이다.
- ② $a^2 < 3$ 이면 $a < \sqrt{3}$ 이다.
- ③ $a^2 \le 3$ 이면 $a \le \sqrt{3}$ 이다.
- ④ $a > \sqrt{3}$ 이면 $a^2 \le 3$ 이다.
- ⑤ $a \ge \sqrt{3}$ 이면 $a^2 < 3$ 이다.

- 13. 함수 $y = \frac{4x-5}{x-1}$ 의 그래프의 두 점근선의 교점의 좌표가 (a, b)일 때, a+b의 값은? [3점]

- ① 1 ② 2 ③ 3 ④ 4 ⑤ 5
- 14. 함수

$$f(x) = \begin{cases} \frac{x^2 - 5x + a}{x - 3} & (x \neq 3) \\ b & (x = 3) \end{cases}$$

- 이 실수 전체의 집합에서 연속일 때, a+b의 값은? (단, a와 b는 상수이다.) [4점]

- ① 1 ② 3 ③ 5 ④ 7 ⑤ 9

15. 공차가 양수인 등차수열 $\{a_n\}$ 에 대하여 이차방정식

 $x^2-14x+24=0$ 의 두 근이 a_3 , a_8 이다. $\sum_{n=3}^8 a_n$ 의 값은? [4점]

- ① 40
- ② 42
- ③ 44 ④ 46
- ⑤ 48
- 16. 함수

$$f(x) = \begin{cases} x^2 + ax + b & (x \le -2) \\ 2x & (x > -2) \end{cases}$$

가 실수 전체의 집합에서 미분가능할 때, a+b의 값은? (단, a와 b는 상수이다.) [4점]

- ① 6 ② 7 ③ 8 ④ 9
- ⑤ 10

수학 영역(나형)

17. 수직선 위를 움직이는 점 P의 시각 t(t>0)에서의 위치 x가

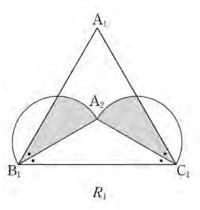
 $x = t^3 - 12t + k$ (k는 상수)

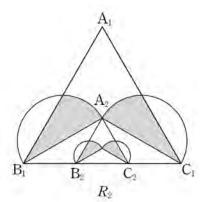
이다. 점 P의 운동 방향이 원점에서 바뀔 때, k의 값은? [4점]

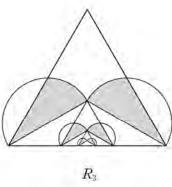
① 10

② 12

③ 14


4 16


⑤ 18


18. 한 변의 길이가 $2\sqrt{3}$ 인 정삼각형 $A_1B_1C_1$ 이 있다. 그림과 같이 $\angle A_1B_1C_1$ 의 이등분선과 $\angle A_1C_1B_1$ 의 이등분선이 만나는 점을 A_2 라 하자. 두 선분 B_1A_2 , C_1A_2 를 각각 지름으로 하는 반원의 내부와 정삼각형 $A_1B_1C_1$ 의 내부의 공통부분인 모양의 도형에 색칠하여 얻은 그림을 R_1 이라 하자. 그림 R_1 에서 점 A_2 를 지나고 선분 A_1B_1 에 평행한 직선이

선분 B_1C_1 과 만나는 점을 B_2 , 점 A_2 를 지나고 선분 A_1C_1 에 평행한 직선이 선분 B_1C_1 과 만나는 점을 C_2 라 하자. 그림 R_1 에 정삼각형 $A_2B_2C_2$ 를 그리고, 그림 R_1 을 얻는 것과 같은 방법으로 정삼각형 $A_2B_2C_2$ 의 내부에 \nearrow 모양의 도형을 그리고 색칠하여 얻은 그림을 R_2 라 하자.

이와 같은 과정을 계속하여 n번째 얻은 그림 R_n 에 색칠되어 있는 부분의 넓이를 S_n 이라 할 때, $\lim S_n$ 의 값은? [4점]

① $\frac{9\sqrt{3}+6\pi}{16}$ ② $\frac{3\sqrt{3}+4\pi}{8}$ ③ $\frac{9\sqrt{3}+8\pi}{16}$ ④ $\frac{3\sqrt{3}+2\pi}{4}$ ⑤ $\frac{3\sqrt{3}+6\pi}{8}$

19. 다음은 x에 대한 다항식 $(x+a^2)^n$ 과 $(x^2-2a)(x+a)^n$ 의 전개식에서 x^{n-1} 의 계수가 같게 되는 두 자연수 a와 $n(n \ge 4)$ 의 값을 구하는 과정의 일부이다.

 $(x+a^2)^n$ 의 전개식에서 x^{n-1} 의 계수는 a^2n 이다. $(x^2-2a)(x+a)^n = x^2(x+a)^n - 2a(x+a)^n$ $x^2(x+a)^n$ 을 전개하면 x^{n-1} 의 계수는 (7) $\times a^3$ 이고, $2a(x+a)^n$ 을 전개하면 x^{n-1} 의 계수는 $2a^2n$ 이다. 따라서 $(x^2-2a)(x+a)^n$ 의 전개식에서 x^{n-1} 의 계수는 (7) $\times a^3 - 2a^2n$

이다. 그러므로

$$a^2n = \boxed{(7)} \times a^3 - 2a^2n$$

이고, 이 식을 정리하여 a = n에 관한 식으로 나타내면

$$a = \frac{18}{\boxed{(나)}}$$

이다. 여기서 a는 자연수이고 n은 4 이상의 자연수이므로

$$n =$$
 (다)

이다.

위의 (7), (4)에 알맞은 식을 각각 f(n), g(n)이라 하고, (다)에 알맞은 수를 k라 할 때, f(k)+g(k)의 값은? [4점]

- ① 10 ② 16
- ③ 22 ④ 28
- **⑤** 34

20. 함수

$$f(x) = \frac{1}{3}x^3 - kx^2 + 1$$
 $(k > 0$ 인 상수)

의 그래프 위의 서로 다른 두 점 A, B에서의 접선 l, m의 기울기가 모두 $3k^2$ 이다. 곡선 y = f(x)에 접하고 x축에 평행한 두 직선과 접선 l, m으로 둘러싸인 도형의 넓이가 24일 때, k의 값은? [4점]

- ① $\frac{1}{2}$ ② 1 ③ $\frac{3}{2}$ ④ 2 ⑤ $\frac{5}{2}$

21. 함수

$$f(x) = \frac{k}{x-11} + 6 \quad (k \ge 36)$$

에 대하여 다음 조건을 만족시키는 모든 자연수 k의 개수는? [4점]

 $|f(x)| \le y \le -x + 5$ 인 두 자연수 x, y의 모든 순서쌍 (x, y)의 개수는 2 이상 4 이하이다.

① 18

② 21

3 24

4 27

⑤ 30

단답형

22. ₆C₄의 값을 구하시오. [3점]

23. 함수 $f(x) = 5x^5 + 3x^3 + x$ 에 대하여 f'(1)의 값을 구하시오. [3점]

10

수학 영역(나형)

24. 전체집합 $U = \{1, 2, 3, 4, 5, 6\}$ 의 부분집합 A에 대하여

$$\{1, 2, 3\} \cap A = \emptyset$$

을 만족시키는 모든 집합 A의 개수를 구하시오. [3점]

25. $\log_3 \frac{9}{2} + \log_3 6$ 의 값을 구하시오. [3점]

 $oldsymbol{26}$. 첫째항이 3인 등비수열 $\{a_n\}$ 에 대하여

$$\frac{a_3}{a_2} - \frac{a_6}{a_4} = \frac{1}{4}$$

일 때, $a_5 = \frac{q}{p}$ 이다. p+q의 값을 구하시오. (단, p와 q는 서로소인 자연수이다.) [4점]

수학 영역(나형)

11

- **27.** 함수 $y = \sqrt{ax+b} + c$ 의 그래프를 x축의 방향으로 -4만큼, y축의 방향으로 3만큼 평행이동한 후, y축에 대하여 대칭이동 하였더니 함수 $y = \sqrt{-2x+9} + 6$ 의 그래프와 일치하였다. a+b+c의 값을 구하시오. (단, a, b, c는 상수이다.) [4점]

12

수학 영역(나형)

 $\mathbf{29}$. 공차가 0이 아닌 등차수열 $\left\{a_{n}\right\}$ 이 있다. 수열 $\left\{b_{n}\right\}$ 은

$$b_1=a_1$$

이고, 2이상의 자연수 n에 대하여

$$b_n = \left\{ \begin{array}{ll} b_{n-1} + a_n & (n \, {\rm ol} \, \, 3 \, {\rm ol} \, \, {\rm idh} \, {\rm ol} \, \, {\rm$$

이다. $b_{10}=a_{10}$ 일 때, $\frac{b_8}{b_{10}}=\frac{q}{p}$ 이다. p+q의 값을 구하시오. (단, p와 q는 서로소인 자연수이다.) [4점]

- ${f 30.}$ 최고차항의 계수가 ${f 1}$ 인 삼차함수 ${f f}(x)$ 와 최고차항의 계수가 ${f 2}$ 인 이차함수 ${f g}(x)$ 가 다음 조건을 만족시킨다.
 - (가) $f(\alpha)=g(\alpha)$ 이고 $f'(\alpha)=g'(\alpha)=-16$ 인 실수 α 가 존재한다.
 - (나) $f'(\beta) = g'(\beta) = 16$ 인 실수 β 가 존재한다.

 $g(\beta+1)-f(\beta+1)$ 의 값을 구하시오. [4점]

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.