2024학년도 인천과학예술영재학교 입학전형 기출문항

2024학년도 인천과학예술영재학교 신입생 입학전형

1교시

수학 영역 검사지

성명	수험번호	
----	------	--

※ 아래 <유의 사항>을 반드시 숙지하기 바랍니다.

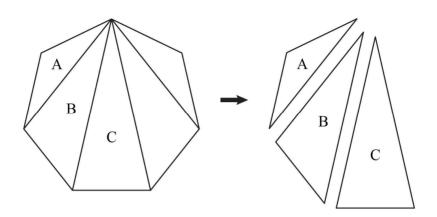
<유의 사항>

- 2. 검사지와 답안지의 총 쪽(면)수와 인쇄 상태를 확인하시오.
- 3. 답은 연필(샤프) 또는 검은색 볼펜으로 작성하시오.
- 4. 답을 수정할 때 지우개를 사용하거나 두 줄(=)을 그어 수정하시오.
- 5. 종료 10분 전부터는 답안지를 교환할 수 없습니다.
- 6. 검사지와 답안지를 고의로 찢거나 훼손하지 마십시오.

인천과학예술영재학교

- 검사 시간은 **100분**입니다.
- 검사지는 총 6쪽(면)입니다.
- 문항은 총 **6문항**입니다.

* 다음 물음을 읽고 답안지에 답을 작성하시오. (1~6번)


1. 다음은 300 이하의 소수를 나열한 것이다.

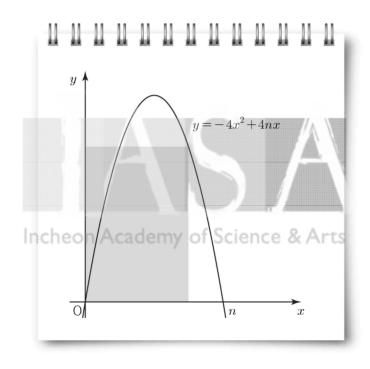
2	3	5	7	11	13	17	19	23	29
31	37	41	43	47	53	59	61	67	71
73	79	83	89	97	101	103	107	109	113
127	131	137	139	149	151	157	163	167	173
179	181	191	193	197	199	211	223	227	229
233	239	241	251	257	263	269	271	277	281
283	293								

세 소수 p, q, $r(p \le q \le r)$ 에 대하여 자연수 N을 $N=p \times q \times r$ 라 하자. $N \le 1000$ 일 때, 다음 물음에 답하시오. [총 15점]

- (1) p+q+r의 값이 최대가 되도록 하는 N의 값을 구하시오. $m{[4\,M]}$
- (2) $r-p \le 4$ 를 만족시키는 N의 값 중 가장 큰 수를 구하시오. [4점] Incheon Academy of Science & Arts
- (3) $p \ge 5$ 인 N의 개수를 구하고 그 과정을 설명하시오. [7점]

2. 그림과 같이 정칠각형의 한 꼭짓점에서 네 개의 대각선을 그으면 세 삼각형 A, B, C를 얻을 수 있다. 이 삼각형들을 뒤집거나 회전하여 겹치지 않게 빈틈없이 이어 붙여서 등변사다리꼴을 만들려고 한다. 등변사다리꼴이란 평행한 변의 양 끝 각의 크기가 같은 사다리꼴이다. 다음 물음에 답하시오. [총 16점]

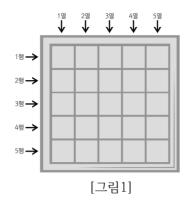
- (1) 세 삼각형 A, B, C 중 두 개의 삼각형만 사용하여 등변사다리꼴을 만들려고 한다. 가능한 등변사다리꼴을 모두 그리고, 어떤 삼각형을 사용하였는지 각 삼각형 위에 표시하시오. [6점]
- (2) 삼각형 A, B, C는 충분히 많이 있다. 삼각형 A, B, C를 각각 한 개 이상 사용하여 등변사다리꼴을 만들려고 한다. 서로 닮음이 아닌 두 개의 등변사다리꼴을 그리고, 어떤 종류의 삼각형을 사용하였는지 각 삼각형 위에 표시하시오. [10점]

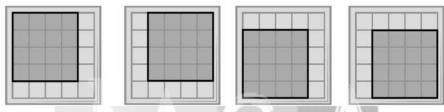

3. 좌표평면 위에 이차함수 $y = -4x^2 + 4nx$ $(n \ge 2$ 인 자연수)의 그래프가 그려진 활동지가 있고, 각 변의 길이가 모두 자연수인 직사각형 모양의 색종이가 다양하게 있다. 그림과 같이 다음 조건을 만족시키도록 놓을 수 있는 색종이를 '맞춤 색종이'라고 하자.

수학 영역

- (가) 색종이는 제1 사분면 위에 있다.
- (나) 색종이의 두 변은 x축, y축 위에 있다.
- (다) 색종이의 꼭짓점 중 좌표축 위에 있지 않은 꼭짓점은 이차함수 $y = -4x^2 + 4nx$ 의 그래프 위에 있다.

다음 물음에 답하시오.


(단, 이차함수 $y = -4x^2 + 4nx$ 의 그래프와 x축의 양의 부분과 만나는 점의 좌표는 (n, 0)이다.) [총 17점]

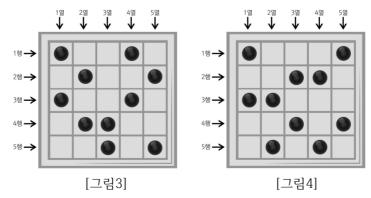

- (1) n=5일 때, '맞춤 색종이'를 모두 찾고, 각각의 둘레의 길이를 구하시오. [4점]
- (2) n = k일 때, 어떤 한 변의 길이가 17인 '맞춤 색종이'와 18인 '맞춤 색종이'가 있다. 어떤 한 변의 길이가 17인 '맞춤 색종이'의 둘레의 길이가 어떤 한 변의 길이가 18인 '맞춤 색종이'의 둘레의 길이보다 크도록 하는 k의 값의 개수를 구하고 그 과정을 설명하시오. $[6\ A]$
- (3) 어떤 한 변의 길이가 16인 '맞춤 색종이'가 있다. 이 색종이의 둘레의 길이가 1000 이하가 될 때, 둘레의 길이 중 가장 작은 값과 가장 큰 값을 각각 구하고 그 과정을 설명하시오. [7점]

1교시

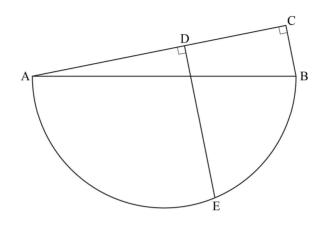
4. [그림 1]과 같이 한 변의 길이가 1인 정사각형 25개로 구성된 격자판이 있다. 다음 물음에 답하시오. [총 16점]

(1) [그림 1]의 격자판에는 [그림 2]와 같이 한 변의 길이가 4인 정사각형이 4개 존재한다. 한 변의 길이가 1인 모든 정사각형 각각에 바둑돌을 1개 또는 2개씩 놓으려고 한다.

[그림2]


[그림 2]에 있는 한 변의 길이가 4인 정사각형에 놓인 바둑돌의 개수는 각각 4의 배수이지만, 격자판 전체에 놓인 바둑돌의 개수는 5의 배수가 되지 않도록 바둑돌을 놓는다. 이때 격자판 전체에 놓을 수 있는 바둑돌의 최소 개수와 최대 개수를 각각 구하고 그 과정을 설명하시오. [6점]

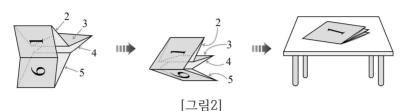
(2) [그림 1]의 격자판 1행 1열에 바둑돌이 놓여 있을 때, 추가로 9개의 바둑돌을 <규칙>에 따라 놓으려고 한다.


<규칙>

- 1. 한 변의 길이가 1인 정사각형에는 바둑돌 1개만 놓을 수 있다.
- 2. 각 행과 각 열에는 2개의 바둑돌을 놓는다.
- 3. 서로 모양이 같은 행은 존재하지 않는다.
- 4. 서로 모양이 같은 열은 존재하지 않는다.

예를 들어 [그림 3]은 <규칙> 3, 4를 따르지 않고, [그림 4]는 <규칙>을 모두 만족한다.

<규칙>에 따라 격자판에 9개의 바둑돌을 추가로 놓는 경우의 수를 구하고 그 과정을 설명하시오. (단, 바둑돌을 놓는 순서는 고려하지 않는다.) [10 점] 5. 그림과 같이 길이가 26인 선분 AB에 대하여 선분 AB를 빗변으로 하는 직각삼각형 ABC와 선분 AB를 지름으로 하는 반원이 평면 위에 있다. 선분 AC 위의 점 D를 CD=2CB가 되도록 잡고 호 AB 위의 점 E를 ∠ADE = 90°가 되도록 잡는다. DA=DE일 때, 다음 물음에 답하시오. [총 17점]



- (1) 선분 CE의 길이를 구하고 그 과정을 설명하시오. [5점]
- (2) 선분 BC의 길이를 구하고 그 과정을 설명하시오. [5점]
- (3) 선분 AB와 선분 DE의 교점을 N이라 하고 선분 AB 위에 점 B가 아닌 점 F를 CF=CB가 되도록 잡을 때, 선분 NF의 길이를 구하고 그 과정을 설명하시오. [7점]

6. [그림 1]과 같이 합동인 6개의 직사각형 종이에 1부터 6까지의 자연수를 하나씩 순서대로 적고 이 종이들을 이어붙여 육각기둥의 두 밑면을 제거한 모양의 종이를 만든다.

[그림 2]와 같이 직사각형의 변을 따라 종이를 접어 직사각형들이 완전히 겹치도록 한 후 이를 탁자에 두었을 때, 가장 위의 직사각형에 적힌 수부터 가장 아래에 있는 직사각형에 적힌 수를 차례대로 읽어 여섯 자리 자연수를 만든다. 예를 들어 [그림 2]와 같이 종이를 접어 탁자에 두면 자연수 123456을 만들 수 있다.

종이를 접는 방식 및 접힌 종이를 탁자에 둔 방식에 따라 만들어지는 자연수는 달라진다. 어떤 자연수를 만들 수 있는지 알아보기 위해, [그림 3]과 같이 <굽은선 그림>을 이용하여 종이를 접는 방식을 나타낼 수 있다. <굽은선 그림>에서 가로 방향 선분은 각 직사각형을 나타내고, 세로 방향 선분은 종이의 접는 선을 나타낸다.

다음 물음에 답하시오. [총 19점]

- (1) 143256을 만드는 접는 방법에 대한 <굽은선 그림>을 하나 그리시오. [4점]
- (2) 만들 수 있는 여섯 자리 자연수 중 143<u>25</u>6과 같이, 2가 5의 왼쪽에 이웃하여 있는 수를 모두 구하고 각각의 수에 대한 <굽은선 그림>을 하나씩 그리시오. [9점]
- (3) [그림 4]와 같이 직사각형의 개수를 8로 늘려, 팔각기둥의 두 밑면을 제거한 모양의 종이를 만들고 여덟 자리 자연수를 만든다고 할 때, 43812756을 만드는 것이 가능한지를 판단하고 그 이유를 설명하시오. [6점]

[그림4]

2024학년도 인천과학예술영재학교 신입생 입학전형

2교시

과학 영역 검사지

성명	수험번호		
		V HIRMAN	

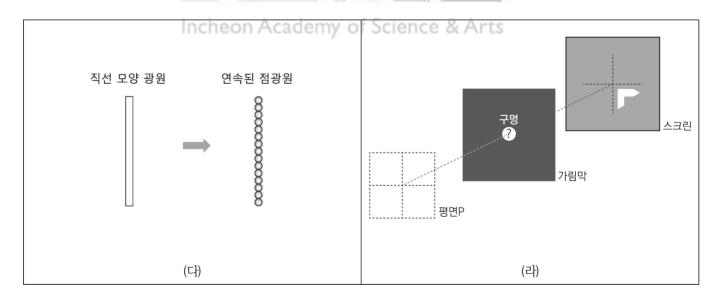
※ 아래 <유의 사항>을 반드시 숙지하기 바랍니다.

<유의 사항>

Incheon Academy of Science & Arts

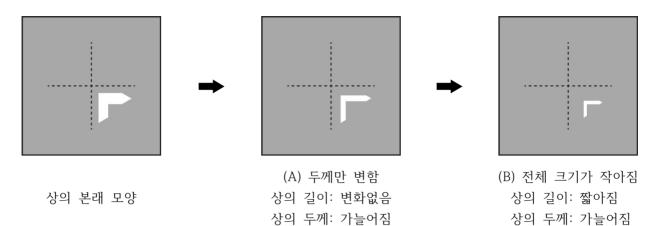
- 검사지와 답안지에 성명과 수험번호를 쓰시오.
 단, 답안지는 매 쪽에 성명과 수험번호를 쓰시오.
- 2. 검사지와 답안지의 총 쪽(면)수와 인쇄 상태를 확인하시오.
- 3. 답은 연필(샤프) 또는 검정색 볼펜으로 작성하시오.
- 4. 답을 수정할 때 지우개를 사용하거나 두 줄(=)을 그어 수정하시오.
- 5. 종료 10분 전부터는 답안지를 교환할 수 없습니다.
- 6. 검사지와 답안지를 고의로 찢거나 훼손하지 마십시오.


인천과학예술영재학교

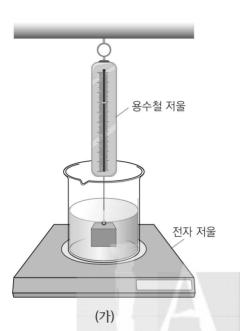

- 검사 시간은 **100분**입니다.
- 검사지는 총 **11쪽(면)**입니다.
- 문항은 총 **9문항**입니다.

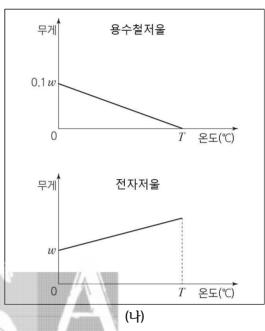
* 다음 물음을 읽고 답안지에 답을 작성하시오. (1~9번)

1. 영재는 빛의 직진과 관련된 수업 후 점광원, 삼각형 모양의 구멍이 뚫린 가림막, 스크린을 이용하여 두 가지 실험을 진행하였다. 그림 (가)와 같이 하나의 점광원 a를 이용한 실험에서는 스크린에 상 a'이 맺혔고, 그림 (나)와 같이 세 개의 점광원 b, c, d를 이용한 실험에서는 스크린에 상 b', c', d'이 맺혔다. (단, 크기가 매우 작은 광원을 '점광원'이라고 한다.) [총 10점]



(1) 직선 모양의 광원은 그림 (다)와 같이 연속된 점광원으로 생각할 수 있다. 영재는 직선 모양의 광원 2개를 이용해 그림 (라)의 스크린에 맺힌 상을 얻었다.




직선 모양의 광원 2개를 평면 P에 어떻게 배치했는지와 가림막의 구멍 모양을 각각 그리시오. [6점]

(2) 그림 (라)의 실험 장치를 조정하여 스크린에 맺힌 상의 모양을 (A), (B)와 같이 차례로 변화시키고자 한다. 각각의 방법을 쓰시오. (단, 광원을 다른 것으로 바꾸지 않는다.) [4점]

2. 온도에 따른 부피 변화가 큰 특수한 재료로 만든 큐브를 이용하여 그림 (가)와 같은 부력 측정 실험을 하였다. 액체가 담긴 비커를 전자저울 위에 올려놓고 용수철저울에 매단 큐브를 액체에 완전히 잠기게 하였다. 큐브를 액체 속에 넣기 전 전자저울의 측정값은 0이었고, 넣은 후 액체의 온도가 0℃가 되면서 용수철저울의 값은 0.1w, 전자저울의 값은 w가 되었다. 액체의 온도를 천천히 올리면서 용수철저울과 전자저울로 무게를 측정했을 때, 각 저울에 측정된 무게는 그림 (나)와 같다. (단, 온도에 따른 액체의 부피 변화는 무시할 수 있을 정도로 작고, 큐브는 액체를 흡수하지 않는다.) [총 12점]

(1) 액체의 온도가 0 °C일 때 액체에 잠긴 큐브의 부피를 V_1 , 액체의 온도가 T °C일 때 액체에 잠긴 큐브의 부피를 V_2 라고 할 때 $\frac{V_2}{V_1}$ 를 구하고, 그렇게 생각한 이유를 쓰시오. [6점]

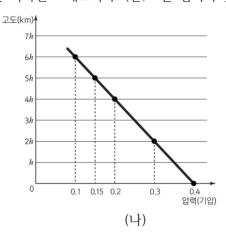
(2) 액체의 온도가 T °C가 되는 순간 용수철저울과 큐브를 연결한 줄을 끊었다. 액체의 온도가 천천히 올라갈 때 큐브의 변화와 전자저울 측정값의 변화를 쓰고, 그 이유를 쓰시오. [6점]

3. 영재는 6가지 원소, 이 원소들로 구성할 수 있는 분자와 이온 화합물, 그리고 실온에서 그 특성들을 조사하여 표로 작성하였다. 그런데 원소의 이름이 지워져, 임의로 ⑦, 따, 때, 때, 때, 때로 표시하였다. 영재는 수재와 함께 ⑦~ 빠의 실제 원소를 알아내려고 한다. [총 12점]

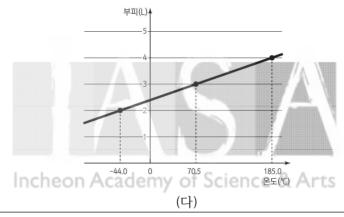
	구 분	특 성
원소	7, Q, Q, Q, Q, H	⑦는 가장 가벼운 원소이다. ⑪는 뼈와 조개껍데기에 많이 들어있다.
분자		\square 와 \square_2 는 반응하여 \square \square_2 를 생성하지만, \square_2 가 부족하면 \square
이온 화합물	⊕⊕ ⊕₂⊕⊕₃ ⊕⊕⊕₃	$\textcircled{P}_2 \roldsymbol{$ \Box_2$} \roldsymbol{$ \Box_2$} \roldsymbol{$ \Box_3$} \roldsymbol{$ \Box_2$} \roldsymbol{$ \Box_3$} \rol$

(1) 원소 ⑦~ 빠를 알아내는 과정에서 수재는 원소 만를 질소(N)라고 주장하였다. 하지만 영재는 다른 원소라고 생각하여 수재를 설득하려고 한다. 영재가 생각하는 원소 만를 쓰고, 수재의 주장을 반박하는 근거를 쓰시오. [5점]

(2) 수재는 원소 ②가 나트륨(Na)이라고 주장하였지만, 영재는 다른 원소일 수도 있다고 생각하였다. 영재가 그렇게 생각한 이유를 쓰시오. [4점]

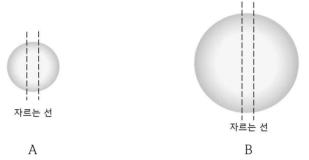

(3) 다음에 제시된 분자만을 사용하여, 실제 원소 기호로 연소 반응의 화학 반응식 3가지를 쓰시오. [3점]

반응물과 생성물로 사용 가능한 분자	
$\textcircled{2}_{2}, \ \textcircled{1}_{2}, \ \textcircled{1}_{2}, \ \textcircled{2}_{2} \textcircled{1}, \ \textcircled{1} \textcircled{1}, \ \textcircled{1} \textcircled{1}_{2}, \ \textcircled{1} \textcircled{2}_{4}$	


4. 영재가 우주선을 타고, 인류 최초로 태양계 밖의 행성 Herta에 착륙하여 기권에 대한 조사를 하였다. [총 10점]

(가)는 이 행성의 고도에 따른 온도를, (나)는 고도에 따른 압력을 나타낸 그래프이다. (단, *h*는 임의의 숫자이다.)

영재는 행성 Herta에서 기체 X의 고도에 따른 부피 변화를 예측하고자 하였다. 영재는 기체 X에 대한 추가 데이터가 더 필요하다는 사실을 알게 되었다. 우주선에서 W g의 기체 X로, 세 가지 온도에 대한 부피를 측정하여 (다)의 그래프를 얻었다. (단, 우주선 내부 압력은 1기압이다.)


(1) 행성 Herta의 고도 0~4h 구간에서 고도가 높아짐에 따라 <u>③온도가 낮아지는 이유</u>와 <u>◎압력이 낮아지는 이유</u>를 각각 쓰시오. [4점]

(2) (가)의 점 A~E에 해당하는 고도에서 W g의 기체 X의 부피를 그래프에 점으로 표시하시오. [6점]

5. 다음은 영재가 세포 분열의 필요성을 알아보기 위해 수행한 실험이다. [총 10점]

[실헊 과정]

- (가) 녹말과 한천(우무)이 골고루 섞인 반지름 1 cm인 구 A와 반지름 2 cm인 구 B를 준비한다.
- (나) A와 B를 각각 아밀레이스 용액 속에 10분 동안 담가, 아밀레이스가 구 안으로 이동할 수 있도록 한다.
- (다) A와 B를 꺼내 그림과 같이 얇게 자른다.

(라) 얇게 자른 한천 조각에 아이오딘-아이오딘화 칼륨 용액을 처리한 후 색의 변화를 관찰한다.

[실험 결과]

○ A 조각의 단면에서는 청람색이 관찰되지 않았으나, B 조각의 단면에서는 중심부에서 청람색이 관찰되었다.

(1) ⑤의 이유를 쓰고, 이를 확인하기 위한 추가 실험을 쓰시오. [6점]

(2) 구 A와 B를 각각 하나의 세포라고 가정할 때, 세포의 크기가 커지면 어떤 단점이 있을지 [실험 결과]를 참고하여 이유와 함께 쓰시오. [4점]

6. 다음은 생물다양성과 종에 대한 자료이다. [총 12점]

- (가) 생물다양성이란 어떤 지역에 살고 있는 식물, 동물, 균류, 원생생물, 원핵생물을 포함한 생물들의 다양한 정도를 말한다.
- (나) 생물을 분류할 때 가장 기본이 되는 단위를 종이라고 한다. 이전에는 종을 구분할 때 주로 생김새나 생활방식만을 기준으로 하였으나, 현재는 다른 생물학적 특징을 포함하여 종을 구분한다.
- (다) 최근 국내의 한 연구팀은 거문도 해역에서 서식하는 한 생물을 새로 발견하여 '곤얄록스 거문엔시스'라는 이름으로 등록하였다. 이 생물은 광합성을 하는 단세포 생물이며 핵막이 있다.

곤얄록스 거문엔시스

- (라) 개구리 A와 개구리 B는 외모나 행동, 서식지가 비슷하여 구분이 쉽지 않다. 대신 이들의 수컷이 암컷을 찾을 때 내는 울음소리를 통해 구분할 수 있는데, 개구리 A 수컷은 저음으로 '깡-깡-깡' 하는 소리를 내지만 개구리 B 수컷은 고음으로 '꽉꽉꽉' 하는 소리를 낸다.
- (마) 남아메리카 대륙에서 서쪽으로 900 km 떨어져 몇 개의 화산섬으로 이루어진 갈라파고스 제도에는 남아메리카 대륙에 살았던 변이가 다양한 한 종의 핀치로부터 비롯된 10여 종이 넘는 핀치가 현재 서식하고 있다. 이들 핀치의 부리 모양은 곤충, 씨앗, 선인장 등 먹이의 종류에 따라 모두 다르다.
- (1) 아래 생물들 중 '곤얄록스 거문엔시스'와 같은 계로 분류할 수 있는 것을 모두 쓰시오. [4점]

아메바, 누룩곰팡이, 젖산균, 짚신벌레, 팽이버섯, 김, 대장균, 효모, 우산이끼

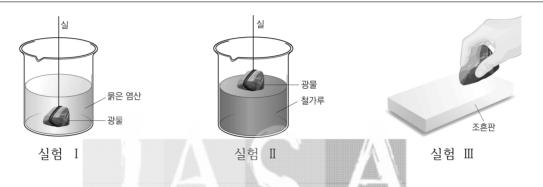
(2) 영재는 개구리 A와 개구리 B를 충분한 기간 관찰한 결과, 두 개구리는 서로 다른 종이라고 결론을 내렸다. 영재가 이러한 결론을 내린 이유에 대해 위 자료를 참고하여 쓰시오. [4점]

Incheon Academy of Science & Arts

- (3) 다음은 위 자료를 읽고, 3명의 학생이 토의한 내용이다.
 - 영재: 서식지 파괴로 많은 생물이 멸종하는 것은 너무 마음이 아파. 식물의 경우 멸종과 생물다양성 감소를 대비해서 종자를 저장한다고도 들었어.
 - 인재: 나도 종자은행에 대해 들어봤는데, 최근에 우리나라에 자생하는 구상나무 종자를 저장하는 행사를 했대.
 - 수재: 구상나무? 그 크리스마스트리용으로 많이 쓰는 거지? 그거 한라산에 많다는데, 한라산에서 종자를 모아서 저장했겠네.
 - 인재: 응, 그런데 한라산뿐만 아니라 우리나라 남부 10개 지역에 자생하는 구상나무 종자들을 수집해서 저장했대.
 - 영재: 근데 한라산의 종자들만 저장하면 될 것 같은데 왜 다른 지역의 종자들도 함께 저장했을까?

수재: 그건,

인재: 맞아, 그래야 생물다양성 감소를 막을 수 있겠네.

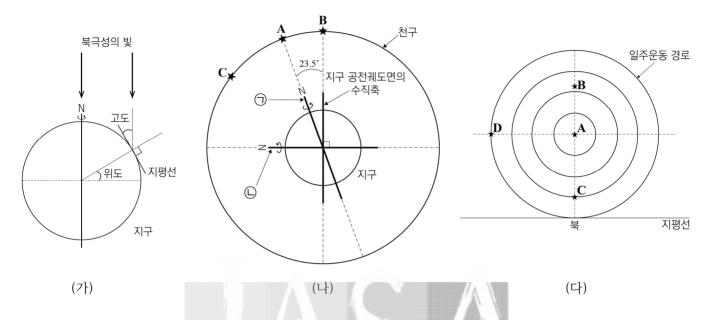

⊙에 들어갈 적절한 말을 위 자료의 (마)를 참고하여 쓰시오. [4점]

7. 다음은 광물의 특성에 관한 실험의 일부이다. [총 10점]

[실험 과정]

(가) 질량이 같은 광물 A, B, C를 각각 3개씩 준비한다. (단, 광물 A, B, C는 각각 방해석, 석영, 자철석 중 하나이다.)(나) 아래와 같이 실험 Ⅰ, Ⅱ, Ⅲ을 수행한다.

실험	바법 이법
I	광물 A, B, C를 실에 매달아 묽은 염산이 들어있는 3개의 비커에 각각 넣는다. 10분 동안 광물의 변화를 관찰한 후, 양팔저울을 이용하여 각 광물의 질량을 비교한다.
II	실험 I 에서 사용하지 않은 광물 A, B, C를 실에 매달아 철가루가 들어있는 3개의 비커에 각각 넣는다. 광물의 변화를 관찰한 후, 양팔저울을 이용하여 각 광물의 질량을 비교한다.
III	실험 I, II에서 사용하지 않은 광물 A, B, C를 3개의 조흔판에 같은 힘으로 20회씩 긁는다. 조흔색을 관찰한 후, 양팔저울을 이용하여 각 광물의 질량을 비교한다.



[실험 결과]

광물 실험	A와 B	A와 C	B와 C	
I	수평을 이룬다.	A쪽으로 기울어진다.	©	
II	\bigcirc	0	B쪽으로 기울어진다.	
III	A쪽으로 기울어진다.	A쪽으로 기울어진다.	B쪽으로 기울어진다.	

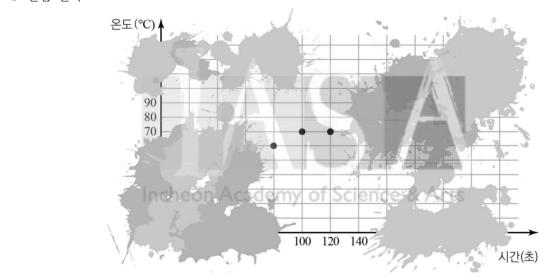
- (1) [실험 결과]의 ⊙, ⊙, ⓒ을 쓰시오. [3점]
- (2) 광물 A, B, C의 굳기를 비교하여 쓰시오. [3점]
- (3) 광물 A, B의 이름과 그렇게 판단한 이유를 각 광물의 특성을 이용하여 쓰시오. [4점]

8. 그림 (가)는 북극성의 고도와 관측자의 위도와의 관계를 나타낸 모식도이고, (나)는 지구의 자전축이 지구 공전궤도면의 수직축에 대해 23.5°(⊙) 및 90°(⊙) 기울어진 경우와 천구상에 있는 별 A, B, C를 나타낸 것이다. (다)는 지구의 자전축이 (나)의 ⊙일 때, 북위 40°지역에서 7월 1일 22시에 북쪽 하늘을 바라본 모습이다. (단, 북극성은 지구 자전축의 연장선 위에 있으며, 지구의 공전궤도는 원 궤도, 지구의 1년은 360일, 1개월은 30일, 1일은 24시간이라고 가정한다. 또한 (다)의 일주운동 경로 사이의 간격은 10°이다.) [총 12점]

(1) (다)를 관측한 장소에서 7월 2일 2시에 관측되는 별 C의 위치와 10월 1일 22시에 관측되는 별 D의 위치를 각각 점(●)으로 표시하시오. [6점]

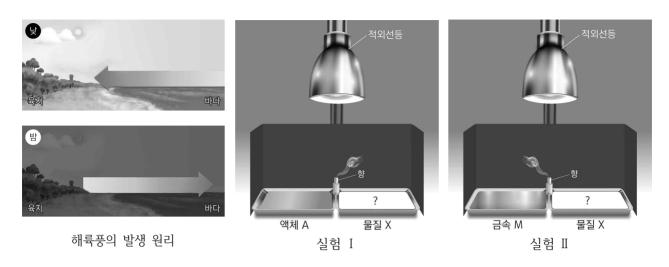
Incheon Academy of Science & Arts

(2) (나)의 ⊙과 ⊙의 상황일 때, 북위 40°지역에서 별 B가 하루 중 지평선으로부터 가장 높이 위치할 때의 고도를 각각 쓰시오. [6점]


- 9. 영재는 해륙풍의 발생 원리를 이용하여 물질 X의 비열 범위를 확인하는 실험을 하려 한다. 예전에 작성한 「액체 A와 금속 M의 비열 구하기」보고서를 참고하여 실험하려 하였으나, 보고서에 잉크가 떨어져 있었다. [총 12점]
 - (1) 다음은 영재의 보고서 일부이다.

[예비 실험]

열량계에 70°C 액체 A 100g과 20°C 금속 M 100g을 넣었다. 일정한 시간이 지난 후 60°C에서 열평형이 일어났다. (단, 열량계 안팎으로 열의 출입은 없다.)


[본 실험]

- 실험 준비물: 액체 A, 금속 M, 가열 장치, 비커, 온도계
- 실험 방법
 - ① 비커에 20°C 액체 A 100g을 넣은 후 가열한다. 이때, 액체 A는 1초당 0.1kJ의 열량을 일정하게 공급받고 있다.
 - ② 계속 가열하면서 100초 후에 온도를 측정한 즉시 20°C 금속 M 100g을 액체 A에 넣는다.
 - ③ 액체 A의 온도를 0초부터 240초까지 20초 간격으로 측정하여 그래프에 표시한다.
- 실험 결과

위의 그래프에서 잉크가 떨어져 보이지 않는 영역을 그래프에 점을 찍어 완성하시오. (단, 액체 A와 금속 M의 상태 변화는 일어나지 않는다.) [8점]

(2) 영재는 해륙풍의 원리를 조사한 후, 같은 온도의 액체 A와 물질 X에 적외선등을 켜고 향 연기의 이동 방향을 관찰하였다. 금속 M과 물질 X로도 같은 방법으로 실험을 수행하였다.

실험 I, Ⅱ에서 영재가 확인한 물질 X의 비열 범위 안에 있는 물질을 아래 표에서 모두 찾아 쓰시오. [4점]

물질	급	유리	벤젠	에탄올	며
비열(J/g·℃)	0.1	0.8	1.7	2.4	4.2

Incheon Academy of Science & Arts

이 면은 여백입니다.