[2023년 고려대학교 모의논술 출제의도 및 문항해설(자연계)]

1. 일반 정보

유형	■ 논술고사 □ 면접 및 구술고사 □ 선다형고사			
전형명	모의논술			
해당 대학의 계열(과목) / 문항번호		자연계열(수학)/1~4번		
출제 범위	교육과정 과목명	수학		
철세 럽게	핵심개념 및 용어 미분, 적분, 기하, 조건부확률			
예상 소요 시간		80분		

2. 문항 및 제시문

문항 1. 다음 글을 읽고 물음에 답하시오. (30점)

(가) 이차함수 y = f(x)가 다음 조건을 만족한다.

$$\text{(i)} \ \lim_{h \to \infty} f(h) \, \frac{\ln{(h+1)} - \ln{(h)}}{h} = 1, \qquad \text{(ii)} \ \lim_{h \to 0} \frac{1}{h^2} \int_h^{h + \sin{(h)}} \! f(x) \, dx = 3$$

- (나) 두 실수 $\alpha<\beta$ 에 대하여 두 점 $(\alpha,f(\alpha))$, $(\beta,f(\beta))$ 를 지나는 직선의 방 정식을 y=k(x)라 할 때, $\int_{\alpha}^{\beta}(k(x)-f(x))dx=\frac{1}{6}$ 이다.
- (다) 두 실수 a,b에 대하여 포물선 $y=-(x-a)^2+b$ 가 두 점 $(\alpha,f(\alpha)),(\beta,f(\beta))$ 를 지난다.
- 1-1) 이차함수 f(x)를 구하고, 그 근거를 설명하시오. (15점)
- 1-2) b를 a에 대한 함수(α , β 가 들어있지 않은 함수)로 표현하고, 그 근거를 설명하시오. (15점)

문항 2. 다음 글을 읽고 물음에 답하시오. (40점)

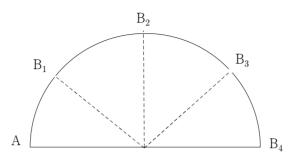
- (가) 함수 f(x)는 $f(x) = x^3 x$ 이다.
- (나) 실수 a가 주어질 때, 함수 q(x)는 다음 성질을 만족한다.
 - (i) q(x)는 일차함수 또는 상수함수이다.
 - (ii) f(a) g(a) = a
 - (iii) f'(a) g'(a) = 0
- 2-1) 두 그래프 y = f(x)와 y = g(x)는 한 점에서 만난다. 그 이유를 설명하시 오. (15점)
- 2-2) 두 그래프 y = f(x)와 y = g(x)의 교점의 x좌표는 a가 바뀔 때마다 달라 진다. 따라서, 이 교점의 x좌표는 a에 관한 함수인 h(a)라 할 수 있다. 함수 h(a)는 다음 성질을 만족한다.

0이 아닌 a에 대하여 $-ah(a) > a^2$ 이다.

- 이 성질이 성립하는 이유를 설명하시오. (15점)
- 2-3) 극한값 $\lim_{a \to \infty} \frac{h(a)}{a}$ 가 존재할 때, 그 값을 구하고 근거를 설명하시오. (10점)

문항 3. 다음 글을 읽고 물음에 답하시오. (15점)

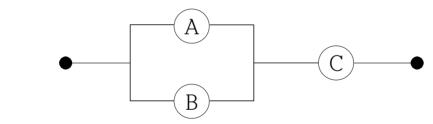
다음 그림과 같이 반경이 1인 반원 위에 $\overline{AB_1} = \overline{B_1B_2} = \overline{B_2B_3} = \overline{B_3B_4}$ 를 만족시키는 4개의 점 B_1 , B_2 , B_3 , B_4 가 순서대로 놓여있다.



3-1) t의 범위가 실수 전체일 때 $(\left|\overrightarrow{AB_2} - t\overrightarrow{AB_1}\right| + \left|\overrightarrow{AB_3} - t\overrightarrow{AB_1}\right|)^2$ 의 최솟값을 구하고, 그 근거를 설명하시오.

문항 4. 다음 글을 읽고 물음에 답하시오. (15점)

부품 A, B, C가 아래 그림과 같이 연결되어 작동하는 회로가 있다.



이 회로는 부품 A 와 B 중 적어도 하나가 정상이고 부품 C가 정상이면 작동을 한다. 새로 생산된 부품이 불량일 확률은

부품 A: 20%, 부품 B: 25%, 부품 C: 10% 이고 부품 A, 부품 B, 부품 C가 불량일 사건은 각각 독립이다.

4-1) 새로 생산된 부품 A, B, C를 연결하였을 때 회로가 작동하지 않았다면 부품 A가 불량일 확률은 얼마인가?

3. 출제 의도

- 주어진 조건이 의미하는 바를 정확히 이해하고 주어진 조건을 활용하여 물음에 대한 답을 논리적으로 설명할 수 있는 능력을 평가하고자 함
- 문항이 의도한 바를 정확하게 이해하고 주장에 대한 근거를 합리적으로 추론할 수 있는 능력을 평가하고자 함
- 함수의 극한, 이차방정식의 근과 계수의 관계, 접선의 방정식, 함수의 그래프 등을 종합적으로 활용하여 주어진 문제를 논리적으로 해결하는 능력을 평가하고자 함
- 벡터의 의미, 벡터의 내적, 삼각함수의 덧셈정리 등을 종합적으로 활용하여 주어진 문제를 논리적으로 해결하는 능력을 평가하고자 함
- 조건부확률의 의미를 정확히 이해하고, 조건부확률을 구하는 과정을 평가하고자 함

4. 출제 근거

가) 교육과정 근거

적용 교육과정	1. 교육부	브 고시 제2015-74호 [별책 8] "수학과 교육과정"	
	1. 교과명	: 수학	
		과목명: 수학	관련
	성취 기준	(2) 삼각함수 [12수학I I 02-03] 사인법칙과 코사인법칙을 이해하고, 이를 활용할 수 있다.	문항 3
		과목명: 수학Ⅱ	관련
관련 성취기준		(1) 함수의 극한과 연속[12수학 II 01-02] 함수의 극한에 대한 성질을 이해하고, 함수의 극한값을 구할 수 있다.	문항 1 (가) 문항 2 2-3)
	성취 기준	(2) 미분 [12수학 II 02-06] 접선의 방정식을 구할 수 있다. [12수학 II 02-08] 함수의 증가와 감소, 극대와 극소를 판 정하고 설명할 수 있다. [12수학 II 02-09] 함수의 그래프의 개형을 그릴 수 있다.	문항 2 2-1), 2-2)
		(3) 적분 [12수학 II 03-04] 다항함수의 정적분을 구할 수 있다.	문항 1 (나)

과목명: 미적분	관련
(2) 미분법	문항 1
[12미적 02-03] 삼각함수의 덧셈정리를 이해한다.	1-1)
[12미적 02-04] 삼각함수의 극한을 구할 수 있다.	문항 2 2-1),
[12미적 02-11] 접선의 방정식을 구할 수 있다.	2-1),
[12미적 02-12] 함수의 그래프의 개형을 그릴 수 있다.	문항 3
(3) 적분법 [12미적 03-03] 여러 가지 함수의 부정적분과 정적분을 구 할 수 있다.	문항 1 (나)
	(2) 미분법 [12미적 02-03] 삼각함수의 덧셈정리를 이해한다. [12미적 02-04] 삼각함수의 극한을 구할 수 있다. [12미적 02-11] 접선의 방정식을 구할 수 있다. [12미적 02-12] 함수의 그래프의 개형을 그릴 수 있다. (3) 적분법 [12미적 03-03] 여러 가지 함수의 부정적분과 정적분을 구

	괴목명: 확률과 통계	관련
	(2) 확률	
성취 기준	[12확통 02-05] 조건부확률의 의미를 이해하고, 이를 구할 수 있다.	문항 4
. -	[12확통 02-06] 사건의 독립 종속의 의미를 이해하고, 이를	
	설명할 수 있다.	

	과목명: 기하	관련
	(1) 이차곡선	
	[12기하 01-01] 포물선의 뜻을 알고, 포물선의 방정식을	문항 1
	구할 수 있다.	
	(2) 평면벡터	
•	[12기하 02-01] 벡터의 뜻을 안다.	
기준	[12기하 02-02] 벡터의 덧셈, 뺄셈, 실수배를 할 수 있다.	
	[12기하 02-03] 위치벡터의 뜻을 알고, 평면벡터와 좌표의	문항 3
	대응을 이해한다.	
	[12기하 02-04] 벡터의 내적의 뜻을 알고, 이를 구할 수	
	있다.	

나) 자료 출처

교과서 내						
도서명	저자	발행처	발행년도	쪽수	관련 자료	재구성 여부
수학 I	권오남 외 11인	교학사	2018	97-108	문항 3	0

수학 I	황선욱 외 8인	미래엔	2018	97-106		0
수학 I	고성은 외 6인	좋은 책신 사고	2018	92-104		0
수학 I	홍성복 외 10인	지학사	2018	68-105		0
수학 I	류희찬 외 10인	천재교과서	2018	97-108		0
수학 I	이준열 외 9인	천재교육	2018	97-108		0
수학 Ⅱ	권오남 외 11인	교학사	2018	12-41 80-99 130-136		0
수학 Ⅱ	황선욱 외 8인	미래엔	2018	11-40 53-98 115-130		0
수학 Ⅱ	고성은 외 6인	좋은 책신 사고	2018	11-41 72-90 113-126	문항 1 (가),	0
수학 Ⅱ	홍성복 외 10인	지학사	2018	10-40 74-93 124-135	(나) 문항 2 2-1), 2-2) 2-3)	0
수학 Ⅱ	류희찬 외 10인	천재교과 서	2018	12-42 67-85 122-130		0
수학 Ⅱ	이준열 외 9인	천재교육	2018	10-40 73-97 114-127		0
미적분	권오남 외 14인	교학사	2018	64-76 108-119 140-148		0
미적분	황선욱 외 8인	미래엔	2018	63-69 71-76 137-142		0
미적분	고성은 외 5인	좋은 책신 사고	2018	58-71 97-108 127-144		0
미적분	홍성복 외 10인	지학사	2018	61-75 110-121 138-155	문항 1 (나), 1-1) 문항 2 2-1),	0
미적분	류희찬 외 9인	천재교과 서	2018	68-84 124-134 156-163	2-2)	0
미적분	이준열 외 7인	천재교육	2018	65-78 107-117 138-146		0
확률과통계	권오남 외	교학사	2019	62-70	문항 4	0

	14인					
확률과통계	황선욱 외 9인	미래엔	2019	58-61		0
확률과통계	고성은 외 5인	좋은 책신 사고	2019	58-66		0
확률과통계	홍성복 외 10인	지학사	2019	62-71		0
확률과통계	류희찬 외 9인	천재교과서	2019	59-70		0
확률과통계	이준열 외 7인	천재교육	2019	61-70		0
기하	권오남 외 14인	교학사	2019	12-18 62-75 82-98		0
기하	황선욱 외 8인	미래엔	2019	11-15 69-81 87-101		0
기하	고성은 외 5인	좋은 책신 사고	2019	11-15 59-69 75-90	문항 1, 문항	0
기하	홍성복 외 10인	지학사	2019	11-15 58-73 78-97	3	0
기하	류희찬 외 9인	천재교과서	2019	12-19 62-99		0
기하	이준열 외 7인	천재교육	2019	11-17 61-74 79-95		0

5. 문항 해설

- 1번 문항은 주어진 조건 (가) 활용하여 이차함수 y=f(x)를 구하고, 조건 (나)를 활용하여 $\beta=\alpha+1$ 의 관계를 얻은 다음, 조건 (다)를 활용하여 이차방정식의 근과 계수의 관계를 활용하여 a,b사이의 관계식을 구하는 문제임
- 2번 문항은 첫 번째로 주어진 함수 $f(x) = x^3 x$ (조건 (가))와 주어진 실수 a에 대하여 조건 (나)를 만족하는 함수 y = g(x)를 구하고, 두 번째로 함수 y = f(x)와 y = g(x)의 교점의 x좌표를 a에 대한 함수 h(a)라 할 때, f(x) g(x)의 그래프를 활용하여 $-ah(a) > a^2$ 의 관계를 만족하는 것을 보이고, 마지막으로 f(h(a)) g(h(a)) = 0으로부터 $\lim_{a \to \infty} \frac{h(a)}{a}$ 의 값을 구하는 문제임

- 3번 문항은 평면 위에 두 점과 한 직선이 있을 때, 한 점에서 직선을 거쳐 다른 한점으로 가는 최단 거리를 물어보는 문제임
- 4번 문항은 조건부확률을 물어보는 문제임

6. 채점 기준

하위 문항	채점 기준
1-1	 주어진 조건 (가)의 (i)을 만족하는 이차함수가 y=f(x)=x²+bx+c임을 유추하고, 조건 (ii)를 활용하여 b=2, c=0임을 보이고, 논리적으로 설명하면 좋은 점수를 부여함
1-2	• 조건 (나)를 활용하여 $\int_{\alpha}^{\beta} (k(x)-f(x))dx = \frac{(\beta-\alpha)^3}{6} = \frac{1}{6}$ 임을 보이고, 이로부터 $\beta-\alpha=1$ 을 얻는다. • 포물선 $y=h(x)=-(x-a)^2+b$ 가 두 점 $(\alpha,f(\alpha))$, $(\beta,f(\beta))$ 를 지난다는 (다) 조건을 활용하여 이차방정식 $h(x)-f(x)=0$ 의 두 근이 α , β 임을 얻고,
	• 근과 계수의 관계를 활용하여 $b=\frac{a^2}{2}+a$ 임을 보이고, 그 과정을 논리적으로 설명하면 좋은 점수를 부여함
2-1	• 주어진 실수 a 에 대하여, 조건 (가), (나)를 만족하는 직선 $y=g(x)$ 를 구하고, 그 과정을 논리적으로 설명하면 좋은 점수를 부여함
2-2	• $y=f(x)-g(x)$ 그래프를 활용하여, 두 그래프 $y=f(x)$, $y=g(x)$ 의 교점의 x 좌표 $h(a)$ 가 "0이 아닌 a 에 대하여 $-ah(a)>a^2$ "임을 보이고, 그 과정을 논리적으로 설명하면 좋은 점수를 부여함
2-3	• $f(h(a))-g(h(a))=0$ 으로부터 극한값 $\lim_{a\to\infty}\frac{h(a)}{a}$ 가 존재할 때, 그 값을 구하고, 그 과정을 논리적으로 설명하면 좋은 점수를 부여함
3-1	• 주어진 문제를 적절히 해석하여 (예로, 주어진 문제는 "평면 위에 두 점과 한 직선이 있을 때, 한 점에서 직선을 거쳐 다른 한점으로 가는 최단 거리를 물어보는 문제"로 해석할 수 있음) 답을 구하고, 그 과정이 논리적이면 좋은 점수를 부여함
4-1	• 조건부확률의 의미를 이해하고, 답을 구하는 과정이 논리적이면 좋은 점수를 부여함

7. 예시 답안 혹은 정답

하위 문항

예시 답아

조건 (가) (i)로부터

$$\lim_{h\to\infty} f(h)\,\frac{(\,\ln{(h+1)}-\ln{(h)})}{h} = \lim_{h\to\infty} \left(\frac{f(h)}{h^2}\,\right) \left(\,\ln{(1+\frac{1}{h})^h}\right) = \lim_{h\to\infty} \left(\frac{f(h)}{h^2}\,\right) = 1$$

를 얻고, 이차함수 f(x)가 $f(x)=x^2+cx+d$ 의 형태임을 유도한다. 조건 가) (ii)로 부터

1-1

$$\lim_{h \to 0} \frac{\int_{h}^{h+\sin(h)} f(x) \, dx}{h^2} = \lim_{h \to 0} \frac{\frac{(h+\sin(h))^3 - h^3}{3} + \frac{c}{2} ((h+\sin(h))^2 - h^2) + d\sin(h)}{h^2}$$

$$= \lim_{h \to 0} \frac{\frac{c}{2} ((h+\sin(h))^2 - h^2) + d\sin(h)}{h^2}$$

$$= 3$$

를 얻고, 이로부터 $\frac{3c}{2}$ =3, d=0을 유도한다. 따라서, 구하는 $f(x)=x^2+2x$ 이다.

두 점 $(\alpha, f(\alpha))$, $(\beta, f(\beta))$ 를 지나는 직선의 방정식은

$$y = k(x) = \frac{f(\beta) - f(\alpha)}{\beta - \alpha} (x - \alpha) + f(\alpha)$$
$$= (\beta + \alpha + 2)(x - \alpha) + \alpha^2 + 2\alpha$$
$$= (\beta + \alpha + 2)x - \alpha\beta$$

이다. 따라서 조건 (나)를 활용하면

$$\int_{\alpha}^{\beta} (k(x) - f(x)) dx = \int_{\alpha}^{\beta} ((\beta + \alpha)x - \alpha\beta - x^{2}) dx$$

$$= \frac{(\beta - \alpha)^{3}}{6}$$

$$= 1$$

1-2

로부터 $\beta - \alpha = 1$ 을 얻는다.

조건 (다)로부터 두 실수 a,b에 대하여 포물선 $y=h(x)=-(x-a)^2+b$ 가 두 점 $(\alpha,f(\alpha)),\ (\beta,f(\beta))$ 을 지나므로 α,β 는

$$f(x) - h(x) = 2x^2 + 2x(1-a) + a^2 - b = 0$$

의 두 근이다. 따라서, 근과 계수의 관계로부터

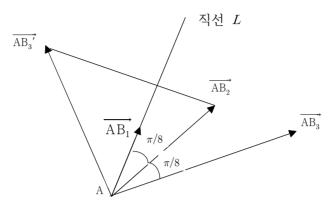
$$\alpha + \beta = a - 1$$
, $\alpha \beta = \frac{a^2 - b}{2}$,

얻고, $\beta = \alpha + 1$ 을 대입하여 정리하면 $b = \frac{a^2 + 2a}{2}$ 를 얻는다.

하위 문항	예시 답안
	조건 (i)-(iii)으로부터 $g(x)=(3a^2-1)x-2a^3-a$ 이다. $k(x)=f(x)-g(x)$ 라 하면 $k(x)=x^3-3a^2x+2a^3+a$ 이다. $a=0$ 일 때와 $a\neq 0$ 인 경우로 나누어 생각해 보면, $a=0$ 일 때는 $k(x)=x^3$ 이므로 $k(x)=0$ 은 하나의 실근을 갖는다. 따라서, $a=0$ 일 때 두 그래프 $y=f(x)$ 와 $y=g(x)$ 는 한 점에서 만난다.
2-1	이제 $a\neq 0$ 이라 하자. $k(x)$ 를 미분하면 $k'(x)=3x^2-3a^2$ 이다. 따라서 $a\neq 0$ 일 때, $k(x)$ 는 $x= a $ 에서 극솟값, $x=- a $ 에서 극댓값을 갖는다.
	$=a>0$ 인 경우: $k(x)$ 의 극솟값은 $x=a$ 일 때 $k(a)=a^3-3a^3+2a^3+a=a>0$ 이다.
	■ $a < 0$ 인 경우: $k(x) 의 국댓값은 x = a 일 때 k(a) = a^3 - 3a^3 + 2a^3 + a = a < 0 $ 이다.
	두 경우 모두 $y=k(x)$ 는 x 축과 한 점에서 만난다. 따라서 $\underline{a\neq 0}$ 인 경우에도 두 그 <u>래프 $y=f(x)$와 $y=g(x)$는 한 점에서 만난다.</u>
	$k(x) = f(x) - g(x)$ 라 하면, $k(x) = x^3 - 3a^2x + 2a^3 + a$ 이다.
2-2	$=a>0$ 인 경우: $k(-a)=4a^3+a>0$ 이고 $\lim_{x\to -\infty}k(x)=-\infty$ 이므로 $y=k(x)$ 는 $(-\infty,-a)$ 에서 x 축과 만난다. 따라서, $\underline{h(a)<-a}$ 이다.
	■ $a<0$ 인 경우: $k(-a)=4a^3+a<0$ 이고 $\lim_{x\to a}k(x)=\infty$ 이므로 $y=k(x)$ 는 $(-a,\infty)$ 에서 x 축과 만
	난다. 따라서, $\underline{h(a)} > -\underline{a}$ 이다. 따라서, $a \neq 0$ 일 때, $-ah(a) > a^2$ 이다.
	$k(x)=f(x)-g(x)$ 라 하면, $k(x)=x^3-3a^2x+2a^3+a$ 이다. $h(a)$ 는 $k(x)=0$ 의 해이 므로 $h(a)$ 는
	$(h(a))^3 - 3a^2h(a) + 2a^3 + a = 0$ 을 만족한다. 따라서
2-3	$\left(\frac{h(a)}{a}\right)^3 - 3\left(\frac{h(a)}{a}\right) + 2 + \frac{1}{a^2} = 0$
	이다. 이 식에 $a ightarrow \infty$ 를 양변에 취하고 $X = \lim_{a ightarrow \infty} \frac{h(a)}{a}$ 라 놓으면
	$X^3 - 3X + 2 = (X - 1)^2 (X + 2) = 0$
	을 얻는다. 문제 2-2)에 의해 $X = \lim_{a \to \infty} \frac{h(a)}{a} \le -1$ 이므로 $\lim_{a \to \infty} \frac{h(a)}{a} = -2$ 이다.

하위 문항 예시 답안

점 \overrightarrow{AB}_1 시나고 벡터 \overrightarrow{AB}_1 에 평행인 직선을 L이라 하고, 벡터 \overrightarrow{AB}_3 를 직선 L에 대하여 대칭 이동한 벡터를 \overrightarrow{AB}_3' 이라 하면 $(|\overrightarrow{AB}_2 - t\overrightarrow{AB}_1| + |\overrightarrow{AB}_3 - t\overrightarrow{AB}_1|)^2$ 의 최솟값은 $|\overrightarrow{AB}_2 - \overrightarrow{AB}_3'|^2$ 이다.



 $\overrightarrow{AB_1}$ 두 벡터 $\overrightarrow{AB_1}$ 와 $\overrightarrow{AB_2}$ 가 이루는 각은 $\frac{\pi}{8}$, 두 벡터 $\overrightarrow{AB_2}$ 와 $\overrightarrow{AB_3}$ 가 이루는 각은 $\frac{\pi}{8}$ 이다. 이때

$$|\overrightarrow{AB_2}| = 2\sin\frac{\pi}{4} = 2\cos\frac{\pi}{4} = \sqrt{2}, \quad |\overrightarrow{AB_3}| = |\overrightarrow{AB_3}'| = 2\sin\frac{3\pi}{8} = 2\cos\frac{\pi}{8}$$

이고, 반각공식으로부터

$$(\sin\frac{\pi}{8})^2 = \frac{1 - \cos\frac{\pi}{4}}{2} = \frac{1}{2} - \frac{1}{2\sqrt{2}}, (\cos\frac{\pi}{8})^2 = \frac{1 + \cos\frac{\pi}{4}}{2} = \frac{1}{2} + \frac{1}{2\sqrt{2}}$$

를 얻는다. 따라서

$$\begin{split} |\overrightarrow{AB_2} - \overrightarrow{AB_3}'|^2 &= |\overrightarrow{AB_2}|^2 + |\overrightarrow{AB_3}'|^2 - 2|\overrightarrow{AB_2}| |\overrightarrow{AB_3}'| \cos \frac{3\pi}{8} \\ &= 2 + (2 + \sqrt{2}) - 2\left(\sqrt{2}\right) \left(2\sin\frac{3\pi}{8}\right) \cos\frac{3\pi}{8} \\ &= 2 + \left(2 + \sqrt{2}\right) - 2\sqrt{2}\left(\sin\frac{3\pi}{4}\right) \\ &= 2 + \sqrt{2} \end{split}$$

부품 A가 정상일 사건을 A, 부품 B가 정상일 사건을 B, 부품 C가 정상일 사건을 C라 하자.

■ 회로가 작동할 사건은 $(A\cap C)\cup(A^c\cap B\cap C)$ 이고 $(A\cap C)$ 와 $(A^c\cap B\cap C)$ 는 배반사건이므로 회로가 작동할 확률은

$$P((A \cap C) \cup (A^{c} \cap B \cap C))$$

$$= P(A \cap C) + P(A^{c} \cap B \cap C)$$

$$= \frac{4}{5} \times \frac{9}{10} + \frac{1}{5} \times \frac{3}{4} \times \frac{9}{10}$$

$$= \frac{171}{200}$$

이다. 따라서 **회로가 작동하지 않을 확률은** $\frac{29}{200}$ 이다.

■ 부품 A가 불량품이고 회로가 작동하지 않을 사건은 $A^c - (A^c \cap B \cap C)$ 이고 사건 A^c 가 사건 $A^c \cap B \cap C$ 를 포함하므로 부품 A가 불량품이고 회로가 작동하지 않을 확률은

4-1

$$P(A^{c} - (A^{c} \cap B \cap C))$$

$$= P(A^{c}) - P(A^{c} \cap B \cap C)$$

$$= \frac{1}{5} - \frac{1}{5} \times \frac{3}{4} \times \frac{9}{10}$$

$$= \frac{13}{200}$$

이다.

■ 따라서 회로가 작동하지 않았다면 부품 A가 불량품일 확률은

$$P(A$$
가 불량품|회로작동안함) =
$$\frac{P(A 가 불량품이고 회로작동안함)}{P(회로작동안함)}$$

$$= \frac{\frac{13}{200}}{\frac{29}{200}}$$
$$= \frac{13}{29}$$

이다.