

CONTENTS

2022학년도 고려대학교 세종캠퍼스

논술 가이드북

l. 2022학년도 고려대학교 세종캠퍼스 신입학 주요사항 안내	. 1
Ⅱ. 2022학년도 고려대학교 세종캠퍼스 논술전형 안내	. 2
Ⅲ. 고려대학교 세종캠퍼스 논술고사 특징 및 유의사항	
IV. 2022학년도 논술고사 자연계열II 모의문제	7
▼ 2022하녀도 노숙고사 자연계역II 모이무제 모벌단아 및 해석1	[

2022학년도 고려대학교 세종캠퍼스 신입학 주요사항 안내

1. 전형별 모집인원 및 전형요소

모집 시기	전형 유형	건형명	모집 인원	전형요소	수능 최저			
	논술	논술전형	417	■ 논술 70 + 학생부(교과) 30	0			
	학	학생부교과전형	169	■ 학생부(교과) 100 (약학과 제외 전 모집단위) ■ 약학과 1단계: 학생부(교과) 100 2단계: 1단계 성적 70 + 면접 30	Δ			
	생 부	지역인재전형	71	■ 학생부(교과) 100	0			
수 시 모 집 -		농어촌학생전형	(34)	■ 학생부(교과) 100	×			
		사회공헌자전형	26	■ 학생부(교과) 100	×			
	실 기 / 실 적	기 / 실	미래인재전형	141	■ 1단계: 서류 100 ■ 2단계: 1단계 성적 70 + 면접 30	×		
			/	/	체육인재전형	10	■ 1단계: 서류(경기실적) 70 + 학생부 30 (교과 25, 출결 5) ■ 2단계: 1단계 성적 80 + 면접 20	×
			글로벌스포츠인재전형	24	■ 1단계: 서류 100 ■ 2단계: 1단계 성적 70 + 면접 30	×		
정		일반전형		■ 인문계, 자연계 : 수능 100 ■ 체능계 : 수능 70 + 실기 30	-			
시 모	수능	교육기회균등전형	(27)	■ 수능 100	-			
포 집	0	특성화고졸업자전형	(12)	■ 수능 100	-			
		특수교육대상자전형	(22)	■ 수능 100	-			
		총 모집인원		1,453(95)				

^{※ ()}는 정원외 인원임

2. 수능최저학력기준

모집단위	수능 최저학력기준	한국사
인문계·체능계 모집단위	국어, 수학, 탐구 중 1개 영역 3등급 이내 또는 영어 2등급 이내	응시
자연계 모집단위(약학과 제외)	국어, 수학, 과학탐구 중 1개 영역 3등급 이내 또는 영어 2등급 이내	응시
약학과	국어, 수학, 영어, 과학탐구 중 3개 영역 등급의 합이 5등급 이내	응시

- 1) 계열은 본 대학교 모집단위 기준임
- 2) 탐구영역은 별도 지정과목이 없으나, 반드시 2개 과목에 응시해야 하며 2개 과목 평균등급을 반영함
- 3) 자연계 모집단위 중 빅데이터사이언스학부, 자유공학부는 사회탐구 과목도 인정함
- 4) 제2외국어/한문/직업탐구는 인정하지 않음

[※] 수능최저학력기준: ○ 수능최저학력기준 적용, △ 약학과만 적용, X 수능최저학력기준 미적용

2022학년도 고려대학교 세종캠퍼스 논술전형 안내

1. 모집단위 및 모집인원

대학	계열	모집단위	학과(전공)	모집인원	
		응용수리과학부	데이터계산과학전공 [교직]	8	
		인공지능사이버보안학과	인공지능사이버보안학과	11	
		디스플레이·반도체	디스플레이융합전공	8	
		물리학부	반도체물리전공	8	
		신소재화학과	신소재화학과	12	
		컴퓨터융합소프트웨어학과	컴퓨터융합소프트웨어학과	18	
 과학기술대학	자연	전자및정보공학과	전자및정보공학과	33	
기획기술대학 	시신	생명정보공학과	생명정보공학과	14	
		식품생명공학과	식품생명공학과	15	
		전자·기계융합공학과	전자·기계융합공학과	18	
		환경시스템공학과	환경시스템공학과	15	
		자유공학부	자유공학부	12	
		미래모빌리티학과	미래모빌리티학과	9	
		지능형반도체공학과	지능형반도체공학과	7	
약학대학	자연	약학과	약학과	10	
		글로벌학부 	한국학전공 [교직]	9	
			중국학전공 [교직]	14	
 글로벌비즈니스대학			영미학전공 [교직]	15	
글도걸미스니스네약 	인판		독일학전공	7	
			오하거여하다	글로벌경영전공	40
		용합경영학부 	디지털경영전공	10	
		정부행정학부	정부행정학부	16	
	인문	공공사회·통일외교학부	공공사회학전공	11	
공공정책대학	인판	으으시청 중 트 지 교 식 그	통일외교안보전공	8	
		경제통계학부	경제정책학전공	16	
	자연	빅데이터사이언스학부	빅데이터사이언스학부	17	
	체능	국제스포츠학부	스포츠과학전공	8	
	~110	¬'"———==================================	스포츠비즈니스전공	8	
문화스포츠대학		문화유산융합학부	문화유산융합학부	12	
	인문	문화창의학부	미디어문예창작전공	8	
		L 최 0 취 역 구	문화콘텐츠전공	8	
스마트도시학부	자연	스마트도시학부	스마트도시학부	12	
		계		417	

[※] 자유공학부는 2학년 진급 시 약학과를 제외한 모든 학과(전공) 중 학생이 희망하는 학과(전공)에 배정함

^{※ [}교직] 표시가 된 학과(전공)는 교직과정이 설치되어 있음. 한국학전공은 국립국어원 인증 한국어교원 자격 취득 과정도 함께 설치되어 있음

1. 지원자격

국내·외 고등학교 졸업(예정)자 또는 관련 법령에 의하여 이와 동등 이상의 학력이 있다고 인정된 자 ※ 외국에서 고등학교를 졸업한 경우, 학력 인정 여부는 해당 국가별 학제 및 학기 등을 고려하여 판단함

2. 전형방법

구분	전형요소별 반영비율(배점)	비고
일괄전형	논술 70% + 학생부(교과) 30% = 계 100% (350점) + (150점) = (500점)	■ 동점자는 모두 선발함 ■ 수능지정응시영역 및 최저학력기준 미충족자, 논술고사 결시자는 선발하지 않음

3. 수능 최저학력기준

모집단위	수능 최저학력기준	한국사
인문계·체능계 모집단위	국어, 수학, 탐구 중 1개 영역 3등급 이내 또는 영어 2등급 이내	응시
자연계 모집단위(약학과 제외)	국어, 수학, 과학탐구 중 1개 영역 3등급 이내 또는 영어 2등급 이내	응시
약학과	국어, 수학, 영어, 과학탐구 중 3개 영역 등급의 합이 5등급 이내	응시

- 1) 계열은 본 대학교 모집단위 기준임
- 2) 탐구영역은 별도 지정과목이 없으나, 반드시 2개 과목에 응시해야 하며 2개 과목 평균등급을 반영함
- 3) 자연계 모집단위 중 빅데이터사이언스학부, 자유공학부는 사회탐구 과목도 인정함
- 4) 제2외국어/한문/직업탐구는 인정하지 않음

4. 전형일정

구분	일정	비고
원서접수	9. 10.(금) 10:00 ~ 9. 14.(화) 18:00	인터넷 원서접수
논술고사	[인문·체능계] 2021. 11. 27.(토) 11:00 ~ 12:30 [자연계] 2021. 11. 27.(토) 15:00 ~ 16:30	장소: 고려대학교 세종캠퍼스 ※ 세부 고사장소 및 입실시간은 2021. 11. 25.(목) 공지 예정
최종합격자 발표	2021. 12. 16.(목) 17:00	입학처 홈페이지(oku.korea.ac.kr)에서 지원자가 개별적으로 합격 여부 조회
합격자 등록	12. 17.(금) ~ 12. 20.(월) 16:00 까지	
미등록 충원 (추가합격자 발표)	12. 20.(월) 21:00 ~ 12. 27.(월) 21:00 까지	

5. 논술고사 개요

응시계열	모집단위	출제유형	출제범위	문제 수	배점
인문계열	인문·체능계 전 모집단위	교과 통합형 논술	교과목 통합 (국어, 사회, 도덕 등)	4문제 내외 (문제별 소문항 있음)	
자연계열	자연계 전 모집단위 (약학과 제외)	수리논술	수학, 수학 I , 수학 II , 미적분	8문제 내외	350점
자연계열 II	약학과	수리논술Ⅱ	수학, 수학 I , 수학 II , 확률과통계, 미적분, 기하	3문제 내외 (문제별 소문항 있음)	

- 1) 인문계열은 교과목 통합형 문제로 출제
- 2) 자연계열은 2022학년도 대학수학능력시험의 수학 출제 범위에 따라 출제(하위과목 간접출제 가능)
- 3) 수리논술은 모집단위에 따라 수리논술I와 수리논술II로 분류되며, 출제범위와 난이도가 상이함

고려대학교 세종캠퍼스 자연계열 논술고사 특징 및 유의사항

고려대학교 세종캠퍼스 자연계열 논술고사는 고등학교 교육과정 범위와 수준 내에서 출제되며, 단순 암기나전문 지식이 아닌 논리적 사고력과 문제해결력을 평가하고자 합니다. 자연계열 논술고사는 서론, 본론, 결론의 형식을 갖추어 서술하는 일반적인 논술이 아니라 문제를 풀거나 증명을 하는 수리논술이며, 모집단위에 따라 수리논술 I 과 수리논술 II로 분류할 수 있습니다. 약학과를 제외한 자연계열 모집단위에 지원하는 학생들은 수리논술 I 에, 약학과에 지원하는 학생들은 수리논술 II에 응시하게 됩니다. 수리논술 I 과 수리논술 II는 출제범위와 난이도가 상이하지만, 모두 고등학교 수준에서 출제되므로, 고등학교 교육과정을 충실히 이수하고 수능 준비를 열심히 한 학생이라면 충분히 문제를 해결할 수 있을 것입니다.

개요

모집단위	출제유형	출제범위	문제 수	고사시간	총점
약학과	수리논술॥	수학, 수학 I , 수학 II , 확률과통계, 미적분, 기하	3문제 내외 (문제별 소문항 있음)	90분	350점

주요 특징

약학과에 해당하는 수리논술॥의 출제범위는 '수학, 수학।, 수학॥, 확률과통계, 미적분, 기하'로, 수능 수학 영역 출제범위 전체가 해당됩니다. 수리논술॥는 3문제 내외의 문제가 출제되며, 문제별로 2개~5개의 소문항이 출제됩니다. 각 문제에는 수학적 개념이나 문제를 푸는 조건이 제시문으로 주어지는데, 이를 활용하여 각문항에서 요구하는 바를 서술해야 합니다. 특히 각 문제의 소문항들은 수학적 기본 개념을 바탕으로 단계를 밟아가는 형태로 출제될 수 있기 때문에 제시문 및 질문에 대한 정확한 이해를 바탕으로 문제풀이 과정을 논리적으로 전개해 나가는 능력이 요구됩니다.

유의사항

✓ 풀이과정을 반드시 작성해주세요.

수리논술에서 가장 중요한 것은 주어진 제시문(개념)을 바탕으로, 문제를 해결하는 과정을 서술하는 것입니다. 객관식 시험에서의 수학 문제는 '정답'을 맞히는 것이 가장 중요하지만, 수리논술에서는 **정확한 풀이과정 없이 답안만 작성하는 경우 높은 점수를 받기 어렵습니다.** 풀이과정을 작성할 때에는 풀이 과정에 맞게 각단계별로 잘 작성하였는지, 논리적으로 단계가 생략되는 부분은 없는지, 정확한 기호를 사용했는지를 확인하도록 합니다. 특히, 풀이과정을 구분 없이 줄글로 이어지듯 작성하는 것 보다, 교과서나 문제지 답안의 풀이 과정처럼 단계별로 식을 전개하는 것이 좋습니다. 제시문에 주어지지 않은 개념이나 용어를 사용할 경우 그정의나 내용을 서술하고, 각 풀이 단계에 번호를 부여하거나, 풀이 중 도출한 식에 ①, ②와 같이 번호를 부여하는 등 답안을 명확하게 적을 수 있도록 합니다.

✓ 정해진 답안 분량을 지켜주세요.

답안의 분량을 준수하는 것 또한 매우 중요합니다. 논술고사의 답안지에는 문제의 유형과 작성 분량에 따라 제한된 작성 범위가 주어집니다. 수험생은 주어진 답안지의 범위 내에만 답안을 작성해야 하며, 범위에서 벗어난 부분은 평가 대상에 포함되지 않습니다. 따라서 답안을 작성하기 전에 답안 작성 범위를 확인하고, 문제에서 요구하는 내용을 작성 범위 내에 모두 담을 수 있도록 유의합니다.

√ 부분점수가 있다는 것을 잊지마세요.

논술고사의 총점은 350점으로, 답안을 쓰지 않거나 풀이과정 및 답안을 잘못 서술한 경우는 점수를 얻지 못하게 됩니다. 그러나, 비록 문제를 끝까지 풀어내지 못하더라도 문제를 해결하기 위한 각 단계까지 답안을 작

성한 경우에는 해당 단계에 부여된 부분점수를 얻을 수 있습니다. 따라서 문제의 최종 답안을 구하지 못하더라도 포기하지 말고 본인이 서술할 수 있는 최대한의 답안을 작성해서 부분점수를 많이 획득하는 것도 고득점으로 가는 좋은 전략이 될 수 있습니다.

✓ 난이도에 유의하며, 시간을 적절히 안배하세요.

논술고사의 고사 시간은 총 90분이며, 출제된 문제를 이해한 후 서술 형태의 답안을 작성해야 하기 때문에 출제된 모든 문제를 해결하기에는 고사 시간이 부족할 수 있습니다. 따라서 본인이 해결할 수 있는 문제와 그렇지 않은 문제를 잘 구분하고, 해결할 수 있는 문제에 시간을 적절히 안배하는 것이 좋은 점수를 얻는 전략이 될 수 있습니다. 또한, 난이도에 따라 문제별 배점이 다르기 때문에 이 점을 감안하여 시간을 배분하는 것이 필요합니다.

✓ 답안은 알아볼 수 있도록 작성해주세요.

답안 작성 시에는 반드시 흑색 볼펜이나 연필 1가지만을 사용해야 합니다. 수리논술의 경우 수정할 내용이 많이 생길 수 있으므로 연필로 작성하는 것을 권장하며, 풀이 과정을 명확하게 작성해야 채점이 가능하므로 반드시 답안을 알아볼 수 있도록 깔끔하게 작성하도록 합니다. 연습지는 별도로 제공되지 않지만, 연습이 필요한 경우 문제지의 여백을 이용하여 답안을 미리 작성해 볼 수 있습니다. 답안을 수정해야 하는 경우, 연필로 작성한 내용은 지우개로 지운 후 다시 작성하도록 하고, 볼펜으로 작성한 경우에는 줄을 그어 잘못되었음을 표시하고 다시 작성하도록 합니다. 수정해야 할 부분이 너무 많거나, 수정한 부분이 너무 많아 답안이 알아 볼 수 없을 정도가 되었다면 새로운 답안지로 교체하여 작성할 수도 있습니다.

空川 Tip

1. 개념에 대한 정의와 문제 풀이과정을 전개하는 연습하기.

논술전형에 대해서 어렵게 생각하는 학생들이 많습니다. 그러나, 고려대학교 세종캠퍼스 자연계열 논술고 사의 난이도나 유형은 수능 수학과 유사하고, 문제에 접근하는 방식도 크게 다르지 않습니다. 따라서 수 학 문제를 풀면서 교과서에 제시된 개념이나 정의를 따로 정리해 보고, 답안지 등을 참고하여 풀이 과정 을 단계별로 적는 연습을 한다면 문제에 어렵지 않게 접근할 수 있을 것입니다. 조금 더 심층적으로 준 비를 하고 싶다면 교과서나 참고서에 있는 증명 과정을 따라 적어보면서 수리논술 답안을 어떻게 하면 보다 체계적이고, 논리적으로 작성할 수 있을지 연습해 보기 바랍니다.

2. 모의문제를 통해 문제의 유형을 파악하기.

2022학년도는 고려대학교 세종캠퍼스 논술고사가 처음 시행되는 해입니다. 따라서 전년도 기출문제가 없기 때문에, 공지된 '2022학년도 모의논술고사'를 반드시 풀어보고, 이를 바탕으로 출제 유형을 파악하는 것이 중요합니다. 자연계열 논술고사의 출제 범위는 상당히 넓기 때문에, 어떤 출제범위에서 어떤 문제가 출제되었는가에 집중하기 보다는 '어떤 유형의 문제가 출제되는지', '제시문의 난이도와 답안의 길이는 어느 정도인지', '문항별 배점과 부분점수 기준은 어떠한지' 등을 중심으로 모의논술을 분석해 보시기 바랍니다.

3. 마지막까지 수업과 수능 준비에 집중하기

고려대학교 세종캠퍼스 논술전형은 수능 최저학력기준이 있는 전형입니다. 전년도를 기준으로 기존 학업 능력고사전형(적성고사전형)의 수능 최저학력기준 충족률은 약 40%정도였습니다. 즉, 수능최저학력기준을 충족한다면 실질경쟁률이 1/2로 떨어지는 것입니다. 따라서 마지막까지 학교 교육과정에 충실하고 수능 준비를 성실히 해 나간다면, 논술전형에서의 경쟁력을 높일 수 있을 것입니다.

고려대학교세종캠퍼스 KOREA UNIVERSITY SEJONG CAMPUS

2022학년도 고려대학교 세종캠퍼스 수시모집 논술전형 논술고사 모의문제 (자연계열 II - 약학과)

모집단위	약학.	과				
성명	수험번호					

※ 감독관의 지시가 있기 전까지 표지를 넘기지 마시오.

[수험생 유의사항]

※ 자연계열Ⅱ 문제지와 자연계열Ⅱ 답안지가 맞는지 반드시 확인할 것.

- 시험시간은 90분임.
- 문제지 및 답안지에 지원학과(부, 전공), 성명, 수험번호를 정확히 기재하시오.
- 답안은 **반드시 검정색 필기구(볼펜, 샤프, 연필) 중 1가지로만 작성하시오.**
- 답안지에 주어진 문항 번호에 맞추어 답안을 작성하고, <u>반드시 답안에 주어진 테두리 안에</u> 답안을 작성하시오(범위에서 벗어난 답안은 채점 대상에서 제외함).
- 답안 수정 시 원고지 사용법에 따르시오(지우개 사용 가능, 수정액 사용 불가).
- 답안지에는 수험번호, 성명 등 답안과 관련이 없는 내용은 어떤 것도 쓰지 마시오(기재 시 "0"점 처리함).
- 연습은 문제지 여백을 이용하시오.

고려대학교 세종캠퍼스 2022학년도 수시 논술고사 모의문제(자연계열 ॥)

1. 다음 제시문 <가>와 <나>를 읽고 문제에 답하시오.

<가> 평면 위의 서로 다른 두 점 F, F'으로부터 거리의 합이 일정한 점들의 집합을 타원이라 한다.

<나> 평면 위에 있는 타원과 직선의 위치 관계는 서로 다른 두 점에서 만나거나 한 점에서 접하거나 서로 만나지 않는다.

1-1. 두 점 F(c,0), F'(-c,0)으로부터 거리의 합이 2a인 타원의 방정식과 기울기가 m인 직선의 방정식을 연립하여 x에 대한 이차방정식을 구하고, 이차방정식의 판별식 D에 따른 타원과 직선의 위치 관계를 설명하시오. (단, a>c>0 이다.) [30점]

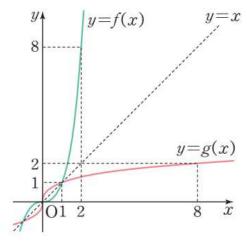
1-3. 점 P(s,t)에서 문제 1-1의 타원에 그은 두 접선이 이루는 각의 크기가 90° 가 되게 하는 점 P의 자취의 방정식을 구하시오. [30점]

1-4. 두 점 (0,10),(5,5)을 지나는 직선과 두 초점 $F(0,\sqrt{3}),F'(0,-\sqrt{3})$ 으로부터 거리의 합이 4인 타원에 대하여, 이 직선에서 타원 위의 점과의 거리의 최 솟값을 구하시오. [30점]

1-2. 문제 1-1의 타원에 대하여 기울기가 m인 접선의 방정식을 구하시오. [20점]

2. 다음을 읽고 문제에 답하시오.

미분가능한 함수 f(x)의 역함수 $f^{-1}(x)$ 가 존재하고, 이 역함수가 미분가능할 때, 함수 $y=f^{-1}(x)$ 의 도함수를 구해보자.


역함수의 정의에 의하여 $f(f^{-1}(x))=x$ 이므로 이식의 양변을 x에 대하여 미분하면 $f'(f^{-1}(x))(f^{-1})'(x)=1$

$$f'(f^{-1}(x))(f^{-1})'(x) = 1$$

이다. 따라서

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{f'(y)} (f'(y) \neq 0),$$
 즉, $\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} (\frac{dx}{dy} \neq 0)$ 이다.

(실제 적용)

아래 그림은 함수 $f(x)=x^3$ 의 그래프와 그 역함수 $g(x)=\sqrt[3]{x}$ 의 그래프를 나타낸 것이다.

역함수의 미분법을 이용하여 함수 $y=\sqrt[3]{x}$ 의 도함수를 구해보자.

 $y=\sqrt[3]{x}$ 에서 $x=y^3$ 이고 $x=y^3$ 의 양변을 y에 대하여 미분하면 $\frac{dx}{dy}=3y^2$ 이므로

함수 $y = \sqrt[3]{x}$ 의 도함수는

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{3y^2} = \frac{1}{3\sqrt[3]{x^2}} (단, x \neq 0)$$
이다.

2-1. $f(x) = \tan x \ (0 \le x < \frac{\pi}{2})$ 일 경우, 역함수의 미 분법을 이용하여 $g(x) = f^{-1}(x) \ (x \ge 0)$ 의 도함수 g'(x)가 $\frac{1}{1+x^2}$ 임을 논술하시오. [30점] **2-2.** 문제 2-1의 결과로부터 다음의 부정적분 공식이 성립함을 알 수 있다.

$$\int \frac{1}{1+x^2} dx = g(x) + C \quad (단, \quad C는 \quad 적분상수이$$
 다.)

위의 공식과 부분적분법을 이용하여 다음의 적분값을 계산하고 그 과정을 자세히 서술하시오. [40점]

$$\int_0^1 g(x) \, dx = \frac{1}{4}\pi - \frac{1}{2} \ln 2$$

2-3. $\int_0^{\frac{\pi}{4}} \tan x \, dx = \frac{1}{2} \ln 2$ 임을 치환적분법을 이용하여 계산하고 그 과정을 자세히 서술하시오. [15점]

2-4. $f(x) = \tan x$, $g(x) = f^{-1}(x)$ 의 그래프를 그리고, 문제 2-3의 계산 결과와 역함수의 성질을 이용하여 문제 2-2의 계산 결과가 참임을 논술하시오. [45점]

3. 다음 제시문 <가>~<마>를 읽고 물음에 답하시오.

<가>

연속확률변수 X가 모든 실수값을 가지고, 그 확률밀 도함수 f(x)가 두 상수 $m,\sigma^2(\sigma>0)$ 에 대하여

$$f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-m)^2}{2\sigma^2}}$$

일 때, 확률변수 X의 확률분포를 정규분포라 하고, 기호로 $N(m, \sigma^2)$ 과 같이 나타낸다.

<나>

확률변수 X가 정규분포 $\mathrm{N}(m,\sigma^2)$ 을 따를 때, 확률 변수 $Z=\frac{X-m}{\sigma}$ 은 표준정규분포 $\mathrm{N}(0,1)$ 을 따른 다. 이 때 구간 [a,b]에 확률변수 X가 속할 확률은 다음과 같다.

$$P(a \le X \le b) = P\left(\frac{a-m}{\sigma} \le Z \le \frac{b-m}{\sigma}\right)$$

<다>

표준정규분포 N(0,1)을 따르는 확률변수 Z의 확률 분포표는 다음과 같다.

z	$P(0 \le Z \le z)$
0.5	0.192
1.0	0.341
1.2	0.385
1.28	0.400
1.4	0.419
1.5	0.433
1.6	0.445
1.65	0.450
1.8	0.464
1.96	0.475
2.0	0.477
2.33	0.490
2.5	0.494
2.58	0.495
3.0	0.499

<라>

한 번의 시행에서 어떤 사건 A가 일어날 확률이 p, 일어나지 않을 확률이 q(=1-p)라 하자. n번 의 독립시행에서 사건 A가 일어나는 횟수를 확률 변수 X라 할 때, X의 확률분포를 이항분포라 하고, 기호로 B(n,p)와 같이 나타낸다. 이 때, 이항 분포 B(n,p)를 따르는 이산확률변수 X의 확률질 량함수는 $P(X=x)={}_{n}C_{x}p^{x}q^{n-x}$ 이다.

<마>

이항분포 B(n,p)의 확률은 n이 클 때 계산하기 매우 어렵고 계산기를 이용해도 쉽지 않다. 그러나 다음의 이항분포와 정규분포 사이의 관계를 이용하면 이항분포의 확률을 근사적으로 쉽게 구할 수 있음이 알려져 있다.

(이항분포와 정규분포의 관계)

확률변수 X가 이항분포 $\mathrm{B}(n,p)$ 를 따를 때, n이 충분히 크면 X는 근사적으로 정규분포

N(np, npq)를 따른다. (단 q = 1 - p)

3-1. 고려 제약회사가 새로운 COVID19 중증환자 대상 치료제를 개발하여 식약처 사용승인을 받았다. 이치료제를 처방하여 환자가 완치될 확률은 80%이다. 이치료제를 처치하는데 환자 한 명당 1,000만 원의 비용이 발생하지만 만약 완치된다면 정부로부터 한 명당 2,000만 원의 보상을 받을 수 있다. 이 치료제를 처방받은 환자 한 명의 완치여부를 나타내는 확률변수를 X라 할 때 확률변수 X는 이항분포를 따른다. 이 환자를 치료함으로써 제약회사가 얻을 수 있는 기대 수익(보상금-치료비용)을 확률변수 Y(단위 만원)라 할 때 Y=aX+b로 표현할 수 있다(이때 a,b는 상수이다). 상수 a와 b를 구하고, 확률변수 Y의 기댓값과 표준편차를 구하시오. [20점]

3-2. 이 제약회사는 100명의 환자를 대상으로 하여 이 치료제를 처방하기로 하였다. 한 명에 대한 치료비용과 정부로부터 제공되는 보상비용은 각각 1,000만 원과 2,000만 원으로 동일하다. 확률변수W는 100명의 환자 가운데 치료된 환자의 수를 나타내는 확률변수이고 이항분포를 따른다. 이 100명을 치료하였을 때 회사의 기대수익을 S(단위 만원)라 할 때 S=cW+d로 표현되는 확률변수이다. 상수 c와 d를 구하고 확률변수 S의 기댓값과 표준편차를 구하시오. [20점]

2022학년도 수시 논술고사 모의문제(자연계열॥ - 약학과)

3-3. 문제 3-2에서 구한 이항분포를 따르는 확률변수 W는 표본의 수가 클 때 근사적으로 정규분포를 따른다. 제시문 $\langle \gamma \rangle$ 를 이용하여 확률변수 S도 정규분포를 따름을 논술하시오. [20점]

3-5. 고려 제약회사가 COVID19 중증환자 치료제를 사용함으로써 정부로부터 더 많은 보상을 받게 된다면 신약개발에 투자한 금액인 5억 2천만 원보다 높은 수익을 얻게 될 것이다. 만약 5억 2천만 원보다 더 많은 수익을 낼 확률이 95% 이상이 되려면 정부로부터 받아야 하는 보상금은 최소 얼마가 되어야 하는지 서술하시오(단, 만 원 이하의 금액은 올림 함). [30점]

3-4. 고려 제약회사는 이 치료제를 개발하는데 5억 2 천만 원을 투자하였다. 문제 3-2의 결과를 활용하여 이 회사가 100명의 환자를 치료하였을 때 투자금액인 5억 2천만 원보다 더 많은 수익을 낼 확률을 제시문 <다>의 표를 활용하여 구하시오. [20점]

고려대학교 세종캠퍼스 2022학년도 수시 논술고사 모의문제 출제의도, 채점기준 및 예시답안

자연계열 II - 약학과

[문제 1]

문제번호	문제 1-1, 1-2, 1-3,		1_1	문항 배점	총110 점	
- 문제 단호 -	문제 1-	1, 1-2, 1-3,	1-4	예상 소요시간	전체 90분 중 25분	
출제 범위	과	과목명 수학, 기				
2/11/11	핵심개님	력 및 용어	타원, 접선, 위	시치관계, 도형의 병	방정식	
출제의도	타원과 ⁻ 한다.	직선의 위치	관계와 도형의	방정식의 관계를	이해하고 활용할 수 있는지	를 확인
문항해설	설명할 =	타원과 직선의 위치관계를 도형의 방정식으로 표현하고, 그 이차방정식의 판별식으로 설명할 수 있는지 확인하고, 접선의 방정식을 유도할수 있는지를 확인하고, 이를 활용수 있는지를 확인한다.				
	하위문항			채점기준		배점
채점기준	[1-1]	되고, 타원 $y = mx + r$ 두 방정식: $(a^2m^2 + b^2$ 이 x 에 대 타원과 직	$egin{array}{ll} ert & ext{NSOL} & ext$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 이라고 다면 10점 - $a^2(n^2 - b^2) = 0$ 을 의 판별식을 D 라 는 $D > 0$ 이면 서		30점
	[1-2] ^{판별} 유도:	판별식 <i>D</i> :	$D=4a^2b^2(a^2m^2+b^2-n^2)$ 를 정확히 구하면 5점 $D=0 \ ext{조건으로부터 직선 방정식의 계수 } m \ ext{과 } n$ 의 관계식을 여 이를 n 에 대하여 정리하여 $n=\pm \sqrt{a^2m^2+b^2}$ 을 계산하고 방정식 $y=mx\pm \sqrt{a^2m^2+b^2}$ 을 구하면 15점		20점	
	[1-3]	m 이라고	하여 접선의 병	당정식 $y_1 = mx_1 \pm$	부원에 그은 접선의 기울기를 $\sqrt{a^2m^2+b^2}$ 을 m 에 대해서 $n+y_1^2-b^2=0$ 을 유도하면	30점

		두 접선이 서로 수직이 되는 조건인 기울기의 곱이 - 1임을 적용하여 조건을 만족하는 점의 자취의 방정식 $x^2+y^2=a^2+b^2$ 을 구하면 ${f 20}$ 점				
		직선의 방정식 $x+y=10$, 타원의 방정식 $x^2+\frac{y^2}{4}=1$ 을 구하면 5점				
	[1-4]	직선과 타원의 거리의 최솟값은 직선과 기울기가 같고 타원에 접하는 접선과 직선의 거리와 같다는 아이디어를 작성해내면 10점	30점			
		접선의 방정식 $y=-x+\sqrt{5}$ 을 구하면 5점				
		직선과 접선의 거리를 구하여 최솟값 $5\sqrt{2}-\frac{\sqrt{10}}{2}$ 을 찾으면 10점				
	[1-1]					
	$b^2 = a^2 -$	$-c^2$ 라고 놓자.				
	a > c > 0	0 이므로, 장축의 길이는 $2a$, 단축의 길이는 $2b$ 인 타원이고,				
	타원의 병	방정식은 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 이다.				
	기울기가 m 인 직선의 방정식은 $y=mx+n$ 라 놓자.					
	직선의 방정식 $y = mx + n$ 을 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 에 대입하여 정리하면					
	$(a^2m^2 +$	$(b^2)x^2 + 2a^2mnx + a^2(n^2 - b^2) = 0$ ① 이다.				
		한 이차방정식 ①의 판별식을 D 라 하자.				
	타원과 직선의 교점의 개수는 x 에 대한 이차방정식 ①의 서로 다른 실근의 개수와 같 기 때문에, 타원과 직선의 위치관계는 $D>0$ 이면 서로 다른 두 점에서 만난고 $D=0$ 이면 한 점에서 접하고					
예시답안						
에시합된 (정답)	D < 00	면 만나지 않는다.				
	[1-2]					
	단계1.					
	이차방정식 $(*)$ 의 판별식 D 를 구하면 $D=4a^2b^2(a^2m^2+b^2-n^2)$ 이다.					
	단계2.					
	$a \neq 0, b \neq 0$ 이므로,					
	접선의 방정식을 구하기 위해 $D=0$ 를 사용하면 $a^2m^2+b^2-n^2=0$ 이 성립한다.					
		에 대하여 정리하면, $n=\pm\sqrt{a^2m^2+b^2}$ 이다.				
	그러므로 	보접선의 방정식은 $y=mx\pm\sqrt{a^2m^2+b^2}$ 이다.				
	[1-3]					
	다 6.1 단계1.					
	•					

한 점을 $\mathrm{P}(x_1,y_1)$ 라 놓는다. $\mathrm{P}(x_1,y_1)$ 에서 타원에 그은 접선의 기울기를 m이라고 하면 [1-2]의 타원의 접선의 방정식에 의하여, $y_1=mx_1\pm\sqrt{a^2m^2+b^2}$ 이 성립한다.

단계2.

이를 m에 대해서 정리하면 $({x_1}^2-a^2)m^2-2x_1y_1m+{y_1}^2-b^2=0$ -----② 이 된다. 조건을 만족하는 기울기 m은 m에 대한 이차방정식 ②의 두 해가 된다.

단계3.

이때, 두 접선이 서로 수직이므로, 두 직선의 기울기의 곱은 -1 이다. 이차방정식의 근과 계수와의 관계식에 의해 m에 대한 이차방정식 ②에서 $\frac{y_1^2-b^2}{x_1^2-a^2}=-1$ 이 성립한다. 즉, $x_1^2+y_1^2=a^2+b^2$ 이 성립한다.

그러므로 조건을 만족하는 점 P의 자취의 방정식은 $x^2 + y^2 = a^2 + b^2$ 이다.

[1-4]

단계1.

주어진 조건을 만족하는 직선의 방정식은 x+y=10이고 타원의 방정식은 $x^2+\frac{y^2}{4}=1$ 이다.

단계2

직선과 타원의 거리의 최솟값은 직선과 기울기가 같고 타원에 접하는 접선과 직선의 거리와 같다.

단계3.

직선과 기울기가 같은 접선, 즉 기울기가 -1 이 되는 접선을 구하기 위해 타원에 대한 접선의 방정식 공식을 이용하면, 접선의 방정식은 $y=-x+\sqrt{5}$ 이다.

단계4.

직선과 접선의 거리를 구하기 위해, 직선 위의 한 점 (0,10) 을 생각하다.

이 점에서 접선 $y=-x+\sqrt{5}$ 까지의 거리는 한 점에서 직선까지의 거리 공식을 이용하여 구한다. 즉.

$$\frac{|0+\sqrt{5}-10|}{\sqrt{1^2+1^2}} = \frac{10-\sqrt{5}}{\sqrt{2}} = 5\sqrt{2} - \frac{\sqrt{10}}{2} \text{ ord.}$$

그러므로 거리의 최솟값은 $5\sqrt{2} - \frac{\sqrt{10}}{2}$ 이다.

[문제 2]

문제번호	므제 2_1 2_2 2_2	2_1	문항 배점	총 130점
문제원호 	문제 2-1, 2-2, 2-3, 2-4		예상 소요시간	전체 90분 중 30분
출제범위	과목명	미적분		

	핵심개님	로 및 용어 역함수의 미분법, 치환적분법, 부분적분법		
출제의도	학생들이 삼각함수와 관련된 다양한 미분법과 적분법을 활용할 수 있는지 확인한다. 어떤 함수의 부정적분에 대한 미분이 자기 자신 임을 이해하여 미분과 적분의 관계를 알고 있는지 확인한다. 또한, 역함수의 그래프는 원래 함수의 그래프와 $y=x$ 에 대하여 대칭이고 정적분은 함수의 그래프와 x 축 사이의 넓이를 구하는 방법임을 이해하고 있는지 확인한다.			
문항해설	역함수의 미분법을 활용하여 $f(x)=\tan x$ 함수의 역함수에 대한 미분을 구하고, 구한 미분의 부정적분이 $f(x)=\tan x$ 의 역함수인 $g(x)=f^{-1}(x)$ 임을 확인한다. 이 사실과 부분적분법을 이용하여 $g(x)=f^{-1}(x)$ 의 정적분을 계산할 수 있는데 그 결과는 $f(x)=\tan x$ 의 정적분과 연관되어 있음을 알 수 있다. 그 이유는 $f(x)=\tan x$ 와 $g(x)$ 는 서로 역함수의 관계가 있으므로 두 함수의 그래프는 $y=x$ 에 대하여 대칭이고 정적분은 함수의 그래프와 x 축 사이의 넓이이기 때문이다.			
	하위문항	채점기준	배점	
채점기준	[2-1]	$y=f^{-1}(x)=g(x)$ 이고 $y=f(x)=\tan x$ 의 역함수 $x=\tan y$ 를 y 에 대하여 양변을 미분하면 $\frac{dx}{dy}=(\tan y)'$ $\frac{dx}{dy}=\sec^2 y$ 이다. $(해설)$ 역함수의 미분법을 이용하여 $\frac{dy}{dx}=\frac{1}{\sec^2 y}$ 을 서술하면 15점	15점	
		그러므로 $\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\sec^2 y} = \frac{1}{\frac{1}{\cos^2 y}} = \frac{1}{\frac{1}{\cos^2 y} + \sin^2 y} = \frac{1}{1 + \tan^2 y} = \frac{1}{1 + x^2}$ 이다. (해설) $\frac{1}{\cos^2 y} = \frac{\cos^2 y + \sin^2 y}{\cos^2 y} = 1 + \tan^2 y$ 임을 이용하여 $\frac{dy}{dx} = \frac{1}{1 + \tan^2 y} = \frac{1}{1 + x^2}$ 을 풀이하면 15점	15점	
채점기준	[2-2]	$\int \frac{1}{1+x^2} dx = g(x) + C $ 임을 이용하자.	15점	

$\int_0^1 g(x) dx = \int_0^1 1g(x) dx$ $= [xg(x)]_0^1 - \int_0^1 xg'(x) dx$ $= g(1) - \int_0^1 \frac{x}{1+x^2} dx$ (해설) 부분적분법을 이용하여 $\int_0^1 g(x) dx = g(1) - \int_0^1 \frac{x}{1+x^2} dx$ 을 풀이하면 15점	
$=g(1)-\int_1^2\frac{1}{2u}du,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	15점
$\int_0^1 g(x) dx = \frac{\pi}{4} - \frac{1}{2} \ln 2$ (해설) 위에서 계산한 결과들과 $g(1) = \frac{\pi}{4}$ 임을 이용하여 $\int_0^1 g(x) dx = \frac{\pi}{4} - \frac{1}{2} \ln 2$ 의 결과를 도출하면 10점	10점

	[2-3]	$\int_0^{\frac{\pi}{4}}\tan xdx=\int_0^{\frac{\pi}{4}}\frac{\sin x}{\cos x}dx$ $=\int_1^{\frac{1}{\sqrt{2}}}-\frac{1}{u}du,\ \ \ \mathrm{d}\mathrm{I}\mathrm{I}\mathrm{I}\mathrm{I}\mathrm{I}\mathrm{I}\mathrm{I}\mathrm{I}\mathrm{I}I$	15점
채점기준	[2-4]	(해설) 그림에 있는 사각형 A 와 사각형 B 와 같은 적분값을 구하는데 필요한 사각형을 표시하고, $f(x)$ 와 $g(x)=f^{-1}(x)$ 의 그래프를 $y=x$ 에 대하여 대칭으로 그리면 15 점	15점
		그림의 실선 $(x=1,y=\frac{\pi}{4})$ 과 x 축 $(y=0),y$ 축 $(x=0)$ 으로 이루어진 사각형 A의 넓이는 $\frac{\pi}{4}$ 이다. 또한, 점선 $(x=\frac{\pi}{4},y=1)$ 과 x 축 $(y=0),y$ 축 $(x=0)$ 으로 이루어진 사각형 B의 넓이도 $\frac{\pi}{4}$ 이다.	15점

15점
대하여
ł.

[2-2]

단계1.

$$\int \frac{1}{1+x^2} dx = g(x) + C 임을 이용하자.$$

$$\int_0^1 g(x) dx = \int_0^1 1 g(x) dx$$

$$= [x g(x)]_0^1 - \int_0^1 x g'(x) dx$$

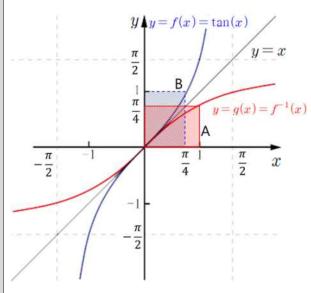
$$= g(1) - \int_0^1 \frac{x}{1 + x^2} dx$$

단계2.

단계3.

$$=\frac{\pi}{4} - \frac{1}{2} \ln 2$$

[2-3]


단계1.

$$\begin{split} \int_0^{\frac{\pi}{4}} \tan x \, dx &= \int_0^{\frac{\pi}{4}} \frac{\sin x}{\cos x} dx \\ &= \int_1^{\frac{1}{\sqrt{2}}} -\frac{1}{u} du, \, \triangleleft \, \mathrm{TPP} \, \mathrm{COS} \, x = u, \, -\sin x = \frac{du}{dx} \\ &= \left[-\ln u \right]_1^{\frac{1}{\sqrt{2}}} \\ &= -\ln \frac{1}{\sqrt{2}} \\ &= \frac{1}{2} \ln 2 \end{split}$$

단계1.

단계2.

그림의 실선 $(x=1,\,y=\frac{\pi}{4})$ 과 x축(y=0), y축(x=0)으로 이루어진 사각형 A의 넓이는 $\frac{\pi}{4}$ 이다.

또한, 점선 $(x=\frac{\pi}{4},y=1)$ 과 x축(y=0), y축(x=0)으로 이루어진 사각형 B의 넓이도 $\frac{\pi}{4}$ 이다.

$$\int_0^1 g(x) dx =$$
 (사각형 A의 넓이)
$$-\left(y=\frac{\pi}{4}, x=0, y=g(x)$$
로 둘러싸인 부분의 넓이 $\right)$ 이다.

단계3.

여기에서, y=g(x)의 그래프와 $y=\tan x$ 의 그래프는 역함수의 성질에 의해 y=x에 대하여 대칭이므로 $\left(y=\frac{\pi}{4}, x=0, y=g(x)$ 로 둘러싸인 부분의 넓이 $\right)$ 는

$$\int_0^{\frac{\pi}{4}} \tan x \, dx = \frac{1}{2} \ln 2$$
와 같다.

즉,
$$\int_0^1 g(x) dx = \frac{\pi}{4} - \frac{1}{2} \ln 2$$
 이다.

[문제 3]

ㅁ꿰빖츳	문제 3-1, 3-2, 3-3, 3-4,		2 4 2 5	문항 배점	총 110점	
문제번호			3-4, 3-3	예상 소요시간	전체 90분 중 30분	
출제 범위	과	목명	확률과통계			
201011	핵심개념 및 용어 정규분포, 이항분포, 이항분포의 정규근사				정규근사	
출제의도	산을 정국 에 따른	이항분포가 정규분포로 근사하는 성질을 활용하여 이항분포로 계산하기 어려운 확률 계산을 정규분포를 이용하여 계산할 수 있음. 이항분포의 평균, 분산 계산 방법, 변수변환에 따른 기댓값, 분산 계산 방법, 정규분포로부터 확률 계산 방법을 알고 있는가를 확인하고자 함				1수변환
문항해설	이항분포를 따르는 확률변수 X 의 평균과 분산을 계산한다. 이산확률변수 X 에 대하여 $aX+b$ 의 평균과 분산을 계산한다. 이항분포의 정규분포의 성질을 이용하여 이산확률변수 X 에 대하여 $aX+b$ 또한 근사적으로 정규분포를 따름을 확인한다. 이항분포의 정규근사 성질을 이용하여 정규분포로부터 특정 사건의 확률을 계산한다.					
	하위문항			채점기준		배점
		Y=2000X 이다.	7-1000이고 이	여기에서 <i>X</i> 는 B((1,0.8)을 따르는 확률변수	6점
		상수 a 와 b 의 값은 $a=2000$, $b=-1000$ 이다.			4점	
	[3-1]	$E(X) = 1 \times 0.8 = 0.8, V(X) = 1 \times 0.8 \times 0.2 = 0.16$			4점	
			2 V $(X) = 2000$	$000 = 2000 \times 0.$ $0^2 \times 0.16 = (200)$		6점
채점기준	[3-2]	$S\!=\!2000\mathrm{V}$ 확률변수이		고 여기에서 W	7는 B(100,0.8)을 따르는	6점
		상수 c 와 a	d의 값은 $c=2$	2000, d = -1000)×100=-100000이다.	4점
		E(W) = 1	$00 \times 0.8 = 8$	0, V(W) = 100 >	$<0.8\times0.2=16$	4점
		V(S) = c		$2000^2 \times 16 = (2)$	$2 \times 80 - 100000 = 60000$ $2000 \times 4)^2,$	6점
	이항분포의		정규분포로의	근사 성질에 따라	평균 80, 분산 16을 가진다. 라 W 는 근사적으로 같은 평 $W\sim { m N}(80,16)$ 이다.	8점
		그리고 $S=$	= 2000 × W-	100000		6점

	1		
		정규분포를 따르는 확률변수의 선형변환 또한 정규분포를 따른다. 확률변수 S의 평균과 분산은 각각 6000 , 8000^2 을 가지므로 확률변수 S 는 정규분포 $N(6000,8000^2)$ 를 따른다.	6점
	[3-4]	$P(S \ge 52000) = P\left(\frac{S - E(S)}{\sigma(S)} \ge \frac{52000 - E(S)}{\sigma(S)}\right)$	5점
		$P(S \ge 52000) = P\left(\frac{S - E(S)}{\sigma(S)} \ge \frac{52000 - E(S)}{\sigma(S)}\right)$ $\cong P\left(Z \ge \frac{52000 - 60000}{8000}\right)$ $= P(Z \ge -1)$	5점
		$P(S \ge 52000) = P\left(\frac{S - E(S)}{\sigma(S)} \ge \frac{52000 - E(S)}{\sigma(S)}\right)$ $\cong P\left(Z \ge \frac{52000 - 60000}{8000}\right)$ $= P(Z \ge -1)$ $= 0.5 + 0.341 = 0.841$	5점
		이므로 84.1%의 확률로 제약회사가 얻는 수익이 5억 2000만 원보다 더 많다.	5점
	[3–5]	A 를 치료된 환자 1명 당 정부 보상금 이라하면 제약회사가 얻는 수익은 $S\!=\!A\! imes W\!\!-\!100000$ 의 형태가 된다.	4점
		여기에서 $ E(S) = A \times E(W) - 100000 = A \times 80 - 100000 = 80 \times A - 100000 $	3점
		$V(S)=A^2 \times V(W)=A^2 \times 16$, S 의 표준편차는 $\sqrt{V(S)}=\sigma(S)=4 \times A \text{ 이다.}$	3점
		$P(S \ge 52000) = \left(\frac{S - \mathbb{E}(S)}{\sigma(S)} \ge \frac{52000 - \mathbb{E}(S)}{\sigma(S)}\right)$ $= \left(Z \ge \frac{52000 - (80A - 100000)}{4A}\right) \ge 0.95$	10점
		$\frac{52000 - (80 \times A - 100000)}{4 \times A} \leq -1.65 \text{ 이어야 한다.}$	5점
		위의 조건은 $A>2070.8$ 이고 만 원단위에 올림하면 정부와 같은 계약을 할 때 치료된 환자 1명 당 보상금은 2,071만 원 이상으로 정해야 한다.	5점

[3-1]

Y=2000 imes X-1000이고 여기에서 X는 $\mathrm{B}(1,0.8)$ 을 따르는 확률변수이다.

상수 a와 b의 값은 a = 2000, b = -1000이다.

$$E(X) = 1 \times 0.8 = 0.8, V(X) = 1 \times 0.8 \times 0.2 = 0.16$$

$$E(Y) = 2000 \times E(X) - 1000 = 2000 \times 0.8 - 1000 = 600$$

$$V(Y) = a^2 \times V(X) = 2000^2 \times 0.16 = (2000 \times 0.4)^2$$
. $= \sqrt{V(Y)} = 800$

[3-2]

 $S = 2000 \times W - 100000$ 이고 여기에서 W는 $\mathrm{B}(100, 0.8)$ 을 따르는 확률변수이다.

상수 c와 d의 값은 c = 2000, $d = -1000 \times 100 = -100000$ 이다.

$$E(W) = 100 \times 0.8 = 80, V(W) = 100 \times 0.8 \times 0.2 = 16$$

$$E(S) = 2000 \times E(W) - 100000 = 2000 \times 80 - 100000 = 60000$$

$$V(S) = c^2 \times V(W) = 2000^2 \times 16 = (2000 \times 4)^2$$
. $\leq \sqrt{V(S)} = \sigma(S) = 8000$

[3-3]

확률변수 W는 [3-2]에서 보인 바와 같이 평균 80, 분산 16을 가진다. 이항분포의 정규분 포로의 근사 성질에 따라 W는 근사적으로 같은 평균과 분산을 가지는 정규분포를 따른다. 즉 $W\sim N(80.16)$ 이다.

예시답안 (정답)

그리고 S=2000 imes W-100000이다. 정규분포를 따르는 확률변수의 선형변환 또한 정규분포를 따른다. 확률변수 S의 평균과 분산은 각각 6000, 8000^2 을 가지므로 확률변수 S는 정규분포 $S\sim N(6000,8000^2)$ 를 따른다.

[3-4]

$$P(S \ge 52000) = P\left(\frac{S - E(S)}{\sigma(S)} \ge \frac{52000 - E(S)}{\sigma(S)}\right)$$
$$= P\left(Z \ge \frac{52000 - 60000}{8000}\right)$$
$$= P(Z \ge -1)$$
$$= 0.5 + 0.341 = 0.841$$

이므로 84.1%의 확률로 제약회사가 얻는 수익이 5억 2000만 원보다 더 많다.

[3-5]

A를 치료된 환자 1명 당 정부 보상금 이라하면 제약회사가 얻는 수익은 $S\!=\!A imes W\!-\!100000$ 의 형태가 된다.

여기에서

$$E(S) = A \times E(W) - 100000 = A \times 80 - 100000 = 80 \times A - 100000$$

$$V(S) = A^2 \times V(W) = A^2 \times 16$$
. S의 표준편차는 $\sqrt{V(S)} = \sigma(S) = 4A$ 이다.

제약회사가 5억 2000만 원 이상의 수익을 95%의 확률로 얻기 위해서는

$$P(S \ge 52000) = \left(\frac{S - E(S)}{\sigma(S)} \ge \frac{52000 - E(S)}{\sigma(S)}\right)$$
$$= \left(Z \ge \frac{52000 - (80A - 100000)}{4A}\right) \ge 0.95$$

를 만족해야 하므로 $\dfrac{52000-\left(80A-100000\right)}{4A}\!\leq\!-1.65$ 이어야 한다.

위의 조건은 $A \geq 2070.8$ 이고

만 원단위에 올림하면 정부와 같은 계약을 할 때 치료된 환자 1명 당 보상금은 2,071만 원 이상으로 정해야 한다.

MEMO	

고려대학교 세종캠퍼스 KOREA UNIVERSITY SEJONG CAMPUS

LIBERTAS JUSTITIA VERITAS

세종캠퍼스

30019 세종특별자치시 세종로 2511 Tel. 044-860-1900

oku.korea.ac.kr