

2022 고려대학교 세종캠퍼스

논술 가이드북

자 연

CONTENTS

2022학년도 고려대학교 세종캠퍼스

논술 가이드북

l. 2022학년도 고려대학교 세종캠퍼스 신입학 주요사항 안내	1
Ⅱ. 2022학년도 고려대학교 세종캠퍼스 논술전형 안내	2
Ⅲ. 고려대학교 세종캠퍼스 논술고사 특징 및 유의사항	4
IV. 2022학년도 논술고사 자연계열I 모의문제	7
▼ 2022하녀도 노숙고사 자여계역I 모이무제 모번단아 및 해석1	-

2022학년도 고려대학교 세종캠퍼스 신입학 주요사항 안내

1. 전형별 모집인원 및 전형요소

모집 시기	전형 유형	건형명	모집 인원	전형요소	수능 최저
	논술	논술전형	417	■ 논술 70 + 학생부(교과) 30	0
	학	학생부교과전형	169	■ 학생부(교과) 100 (약학과 제외 전 모집단위) ■ 약학과 1단계: 학생부(교과) 100 2단계: 1단계 성적 70 + 면접 30	Δ
.	생 부	지역인재전형	71	■ 학생부(교과) 100	0
수 시		농어촌학생전형	(34)	■ 학생부(교과) 100	×
모 집		사회공헌자전형	26	■ 학생부(교과) 100	×
	실	미래인재전형	141	■ 1단계: 서류 100 ■ 2단계: 1단계 성적 70 + 면접 30	×
	기 / 실	체육인재전형	10	■ 1단계: 서류(경기실적) 70 + 학생부 30 (교과 25, 출결 5) ■ 2단계: 1단계 성적 80 + 면접 20	×
	적	글로벌스포츠인재전형	24	■ 1단계: 서류 100 ■ 2단계: 1단계 성적 70 + 면접 30	×
정		일반전형	595	■ 인문계, 자연계 : 수능 100 ■ 체능계 : 수능 70 + 실기 30	-
시 모	수능	교육기회균등전형	(27)	■ 수능 100	-
 집	0	특성화고졸업자전형	(12)	■ 수능 100	-
		특수교육대상자전형	(22)	■ 수능 100	-
		총 모집인원		1,453(95)	

^{※ ()}는 정원외 인원임

2. 수능최저학력기준

모집단위	수능 최저학력기준	한국사
인문계·체능계 모집단위	국어, 수학, 탐구 중 1개 영역 3등급 이내 또는 영어 2등급 이내	응시
자연계 모집단위(약학과 제외)	국어, 수학, 과학탐구 중 1개 영역 3등급 이내 또는 영어 2등급 이내	응시
약학과	국어, 수학, 영어, 과학탐구 중 3개 영역 등급의 합이 5등급 이내	응시

- 1) 계열은 본 대학교 모집단위 기준임
- 2) 탐구영역은 별도 지정과목이 없으나, 반드시 2개 과목에 응시해야 하며 2개 과목 평균등급을 반영함
- 3) 자연계 모집단위 중 빅데이터사이언스학부, 자유공학부는 사회탐구 과목도 인정함
- 4) 제2외국어/한문/직업탐구는 인정하지 않음

[※] 수능최저학력기준: ○ 수능최저학력기준 적용, △ 약학과만 적용, X 수능최저학력기준 미적용

2022학년도 고려대학교 세종캠퍼스 논술전형 안내

1. 모집단위 및 모집인원

대학	계열	모집단위	학과(전공)	모집인원
		응용수리과학부	데이터계산과학전공 [교직]	8
		인공지능사이버보안학과	인공지능사이버보안학과	11
		디스플레이·반도체	디스플레이융합전공	8
		물리학부	반도체물리전공	8
		신소재화학과	신소재화학과	12
		컴퓨터융합소프트웨어학과	컴퓨터융합소프트웨어학과	18
 과학기술대학	자연	전자및정보공학과	전자및정보공학과	33
기획기술대학 	시신	생명정보공학과	생명정보공학과	14
		식품생명공학과	식품생명공학과	15
		전자·기계융합공학과	전자·기계융합공학과	18
		환경시스템공학과	환경시스템공학과	15
		자유공학부	자유공학부	12
		미래모빌리티학과	미래모빌리티학과	9
		지능형반도체공학과	지능형반도체공학과	7
약학대학	자연	약학과	약학과	10
			한국학전공 [교직]	9
		 그글버하ㅂ	중국학전공 [교직]	14
 글로벌비즈니스대학	OI 🗆	글로벌학부 	영미학전공 [교직]	15
글도걸미스니스네약 	인문		독일학전공	7
		융합경영학부	글로벌경영전공	40
		B합성장역구 	디지털경영전공	10
		정부행정학부	정부행정학부	16
	인문	공공사회·통일외교학부	공공사회학전공	11
공공정책대학	인판	으으시청 중 트 지 교 식 그	통일외교안보전공	8
		경제통계학부	경제정책학전공	16
	자연	빅데이터사이언스학부	빅데이터사이언스학부	17
	체능	국제스포츠학부	스포츠과학전공	8
	~110	¬'"———==================================	스포츠비즈니스전공	8
문화스포츠대학		문화유산융합학부	문화유산융합학부	12
	인문	문화창의학부	미디어문예창작전공	8
		L 최 0 취 역 구	문화콘텐츠전공	8
스마트도시학부	자연	스마트도시학부	스마트도시학부	12
		계		417

[※] 자유공학부는 2학년 진급 시 약학과를 제외한 모든 학과(전공) 중 학생이 희망하는 학과(전공)에 배정함

^{※ [}교직] 표시가 된 학과(전공)는 교직과정이 설치되어 있음. 한국학전공은 국립국어원 인증 한국어교원 자격 취득 과정도 함께 설치되어 있음

1. 지원자격

국내·외 고등학교 졸업(예정)자 또는 관련 법령에 의하여 이와 동등 이상의 학력이 있다고 인정된 자 ※ 외국에서 고등학교를 졸업한 경우, 학력 인정 여부는 해당 국가별 학제 및 학기 등을 고려하여 판단함

2. 전형방법

구분	전형요소별 반영비율(배점)	비고
일괄전형	논술 70% + 학생부(교과) 30% = 계 100% (350점) + (150점) = (500점)	■ 동점자는 모두 선발함 ■ 수능지정응시영역 및 최저학력기준 미충족자, 논술고사 결시자는 선발하지 않음

3. 수능 최저학력기준

모집단위	수능 최저학력기준	한국사
인문계·체능계 모집단위	국어, 수학, 탐구 중 1개 영역 3등급 이내 또는 영어 2등급 이내	응시
자연계 모집단위(약학과 제외)	국어, 수학, 과학탐구 중 1개 영역 3등급 이내 또는 영어 2등급 이내	응시
약학과	국어, 수학, 영어, 과학탐구 중 3개 영역 등급의 합이 5등급 이내	응시

- 1) 계열은 본 대학교 모집단위 기준임
- 2) 탐구영역은 별도 지정과목이 없으나, 반드시 2개 과목에 응시해야 하며 2개 과목 평균등급을 반영함
- 3) 자연계 모집단위 중 빅데이터사이언스학부, 자유공학부는 사회탐구 과목도 인정함
- 4) 제2외국어/한문/직업탐구는 인정하지 않음

4. 전형일정

구분	일정	비고
원서접수	9. 10.(금) 10:00 ~ 9. 14.(화) 18:00	인터넷 원서접수
논술고사	[인문·체능계] 2021. 11. 27.(토) 11:00 ~ 12:30 [자연계] 2021. 11. 27.(토) 15:00 ~ 16:30	장소: 고려대학교 세종캠퍼스 ※ 세부 고사장소 및 입실시간은 2021. 11. 25.(목) 공지 예정
최종합격자 발표	2021. 12. 16.(목) 17:00	입학처 홈페이지(oku.korea.ac.kr)에서 지원자가 개별적으로 합격 여부 조회
합격자 등록	12. 17.(금) ~ 12. 20.(월) 16:00 까지	
미등록 충원 (추가합격자 발표)	12. 20.(월) 21:00 ~ 12. 27.(월) 21:00 까지	

5. 논술고사 개요

응시계열	모집단위	출제유형	출제범위	문제 수	배점
인문계열	인문·체능계 전 모집단위	교과 통합형 논술	교과목 통합 (국어, 사회, 도덕 등)	4문제 내외 (문제별 소문항 있음)	
자연계열 I	자연계 전 모집단위 (약학과 제외)	수리논술 I	수학, 수학 l , 수학 ll , 미적분	8문제 내외	350점
자연계열॥	약학과	수리논술	수학, 수학 I , 수학 II , 확률과통계, 미적분, 기하	3문제 내외 (문제별 소문항 있음)	

- 1) 인문계열은 교과목 통합형 문제로 출제
- 2) 자연계열은 2022학년도 대학수학능력시험의 수학 출제 범위에 따라 출제(하위과목 간접출제 가능)
- 3) 수리논술은 모집단위에 따라 수리논술I와 수리논술II로 분류되며, 출제범위와 난이도가 상이함

고려대학교 세종캠퍼스 자연계열 논술고사 특징 및 유의사항

고려대학교 세종캠퍼스 자연계열 논술고사는 고등학교 교육과정 범위와 수준 내에서 출제되며, 단순 암기나전문 지식이 아닌 논리적 사고력과 문제해결력을 평가하고자 합니다. 자연계열 논술고사는 서론, 본론, 결론의 형식을 갖추어 서술하는 일반적인 논술이 아니라 문제를 풀거나 증명을 하는 수리논술이며, 모집단위에 따라 수리논술 I 과 수리논술 II 로 분류할 수 있습니다. 약학과를 제외한 자연계열 모집단위에 지원하는 학생들은 수리논술 I 에, 약학과에 지원하는 학생들은 수리논술 II에 응시하게 됩니다. 수리논술 I 과 수리논술 II 는 출제범위와 난이도가 상이하지만, 모두 고등학교 수준에서 출제되므로, 고등학교 교육과정을 충실히 이수하고 수능 준비를 열심히 한 학생이라면 충분히 문제를 해결할 수 있을 것입니다.

개요

모집단위	출제유형	출제범위	문제 수	고사시간	총점
자연계 전 모집단위 (약학과 제외)	수리논술	수학, 수학 I , 수학 II , 미적분	8문제 내외	90분	350점

주요 특징

수리논술 I 은 약학과를 제외한 자연계열 전 모집단위에 해당하며, 출제범위는 '수학, 수학 I, 수학 II, 미적 분'입니다. 총 8문제 내외의 문제가 출제되며, 문제별 소문항은 없습니다. 문제의 유형은 주어진 수학적 개념이나 조건을 바탕으로 답안을 도출하거나, 특정 수식을 증명하는 형식으로, 수능 수학영역의 문제와 유사합니다. 다만 객관식이나 정답만을 작성하는 단답형 문제가 아니라, 풀이 과정을 서술해야 한다는 점에서 차이가 있는 것입니다.

수능 기출문제					세종캠퍼스 수리논술 I 모의문제
[2021학년도 3월 전국연합학력평가 수학 8번]				[세종캠퍼스 수리논술 모의문제 1번]	
8. 곡선 <i>y</i>	$=x^3-3x^2$	-9x 와 직	선 $y = k$ 가	서로 다른	1. x 에 관한 이차방정식 $x^2 - 3x + k^2 - 1 = 0$ 의 두 근
세 점에서	만나도록 7	하는 정수 k	의 최댓값을	· <i>M</i> , 최솟	α, β 에 대하여 $\alpha^2 - 2\alpha\beta + \beta^2 = 2$ 이 성립할 때, 양수
값을 m 이	라 할 때, N	I-m의 값은?	[3점]		k의 값을 구하시오. [20점]
① 27	2 28	3 29	④ 30	⑤ 31	

이처럼 수리논술 I 은 수능과 유사한 형태를 보이기 때문에 평소 고교 수업에 충실하고, 수능 준비를 열심히 한 학생이라면 누구나 문제에 접근할 수 있으며, 서론·본론·결론의 형식을 갖추어 서술하거나 복 잡한 제시문 간의 관계를 추론하여 서술하는 다른 논술에 비하여 준비 부담이 적을 것입니다.

유의사항

✓ 풀이과정을 반드시 작성해주세요.

수리논술에서 가장 중요한 것은 주어진 제시문(개념)을 바탕으로, 문제를 해결하는 과정을 서술하는 것입니다. 객관식 시험에서의 수학 문제는 '정답'을 맞히는 것이 가장 중요하지만, 수리논술에서는 **정확한 풀이과정 없이 답안만 작성하는 경우 높은 점수를 받기 어렵습니다.** 풀이과정을 작성할 때에는 풀이 과정에 맞게 각단계별로 잘 작성하였는지, 논리적으로 단계가 생략되는 부분은 없는지, 정확한 기호를 사용했는지를 확인하도록 합니다. 특히, 풀이과정을 구분 없이 줄글로 이어지듯 작성하는 것 보다, 교과서나 문제지 답안의 풀이과정처럼 단계별로 식을 전개하는 것이 좋습니다. 제시문에 주어지지 않은 개념이나 용어를 사용할 경우 그정의나 내용을 서술하고, 각 풀이 단계에 번호를 부여하거나, 풀이 중 도출한 식에 ①, ②와 같이 번호를 부여하는 등 답안을 명확하게 적을 수 있도록 합니다.

✓ 정해진 답안 분량을 지켜주세요.

답안의 분량을 준수하는 것 또한 매우 중요합니다. 논술고사의 답안지에는 문제의 유형과 작성 분량에 따라 제한된 작성 범위가 주어집니다. 수험생은 주어진 답안지의 범위 내에만 답안을 작성해야 하며, 범위에서 벗어난 부분은 평가 대상에 포함되지 않습니다. 따라서 답안을 작성하기 전에 답안 작성 범위를 확인하고, 문제에서 요구하는 내용을 작성 범위 내에 모두 담을 수 있도록 유의합니다.

✓ 부분점수가 있다는 것을 잊지마세요.

논술고사의 총점은 350점으로, 답안을 쓰지 않거나 풀이과정 및 답안을 잘못 서술한 경우는 점수를 얻지 못하게 됩니다. 그러나, 비록 문제를 끝까지 풀어내지 못하더라도 문제를 해결하기 위한 각 단계까지 답안을 작성한 경우에는 해당 단계에 부여된 부분점수를 얻을 수 있습니다. 따라서 문제의 최종 답안을 구하지 못하더라도 포기하지 말고 본인이 서술할 수 있는 최대한의 답안을 작성해서 부분점수를 많이 획득하는 것도 고득점으로 가는 좋은 전략이 될 수 있습니다.

✓ 난이도에 유의하며, 시간을 적절히 안배하세요.

논술고사의 고사 시간은 총 90분이며, 출제된 문제를 이해한 후 서술 형태의 답안을 작성해야 하기 때문에 출제된 모든 문제를 해결하기에는 고사 시간이 부족할 수 있습니다. 따라서 본인이 해결할 수 있는 문제와 그렇지 않은 문제를 잘 구분하고, 해결할 수 있는 문제에 시간을 적절히 안배하는 것이 좋은 점수를 얻는 전략이 될 수 있습니다. 또한, 난이도에 따라 문제별 배점이 다르기 때문에 이 점을 감안하여 시간을 배분하는 것이 필요합니다.

✓ 답안은 알아볼 수 있도록 작성해주세요.

답안 작성 시에는 반드시 흑색 볼펜이나 연필 1가지만을 사용해야 합니다. 수리논술의 경우 수정할 내용이 많이 생길 수 있으므로 연필로 작성하는 것을 권장하며, 풀이 과정을 명확하게 작성해야 채점이 가능하므로 반드시 답안을 알아볼 수 있도록 깔끔하게 작성하도록 합니다. 연습지는 별도로 제공되지 않지만, 연습이 필요한 경우 문제지의 여백을 이용하여 답안을 미리 작성해 볼 수 있습니다. 답안을 수정해야 하는 경우, 연필로 작성한 내용은 지우개로 지운 후 다시 작성하도록 하고, 볼펜으로 작성한 경우에는 줄을 그어 잘못되었음을 표시하고 다시 작성하도록 합니다. 수정해야 할 부분이 너무 많거나, 수정한 부분이 너무 많아 답안이 알아 볼 수 없을 정도가 되었다면 새로운 답안지로 교체하여 작성할 수도 있습니다.

到 Tip

1. 개념에 대한 정의와 문제 풀이과정을 전개하는 연습하기.

논술전형에 대해서 어렵게 생각하는 학생들이 많습니다. 그러나, 고려대학교 세종캠퍼스 자연계열 논술고사의 난이도나 유형은 수능 수학과 유사하고, 문제에 접근하는 방식도 크게 다르지 않습니다. 따라 서 수학 문제를 풀면서 교과서에 제시된 개념이나 정의를 따로 정리해 보고, 답안지 등을 참고하여 풀이 과정을 단계별로 적는 연습을 한다면 문제에 어렵지 않게 접근할 수 있을 것입니다. 조금 더 심층적으로 준비를 하고 싶다면 교과서나 참고서에 있는 증명 과정을 따라 적어보면서 수리논술 답안을 어떻게 하면 보다 체계적이고, 논리적으로 작성할 수 있을지 연습해 보기 바랍니다.

2. 모의문제를 통해 문제의 유형을 파악하기.

2022학년도는 고려대학교 세종캠퍼스 논술고사가 처음 시행되는 해입니다. 따라서 전년도 기출문제가 없기 때문에, 공지된 '2022학년도 모의논술고사'를 반드시 풀어보고, 이를 바탕으로 출제 유형을 파악하는 것이 중요합니다. 자연계열 논술고사의 출제 범위는 상당히 넓기 때문에, 어떤 출제범위에서 어떤 문제가 출제되었는가에 집중하기 보다는 '어떤 유형의 문제가 출제되는지', '제시문의 난이도와 답안의 길이는 어느 정도인지', '문항별 배점과 부분점수 기준은 어떠한지' 등을 중심으로 모의논술을 분석해 보시기 바랍니다.

3. 마지막까지 수업과 수능 준비에 집중하기

고려대학교 세종캠퍼스 논술전형은 수능 최저학력기준이 있는 전형입니다. 전년도를 기준으로 기존 학업 능력고사전형(적성고사전형)의 수능 최저학력기준 충족률은 약 40%정도였습니다. 즉, 수능최저학력기준을 충족한다면 실질경쟁률이 1/2로 떨어지는 것입니다. 따라서 마지막까지 학교 교육과정에 충실하고 수능 준비를 성실히 해 나간다면, 논술전형에서의 경쟁력을 높일 수 있을 것입니다.

2022학년도 고려대학교 세종캠퍼스 수시모집 논술전형 논술고사 모의문제 (자연계열 I - 일반)

모집단위	학과(부, 전공)										
성명		수험번호									

※ 감독관의 지시가 있기 전까지 표지를 넘기지 마시오.

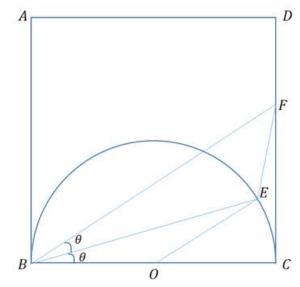
[수험생 유의사항]

※ 자연계열 | 문제지와 자연계열 | 답안지가 맞는지 반드시 확인할 것(약학과 제외).

- 시험시간은 90분임.
- 문제지 및 답안지에 지원학과(부, 전공), 성명, 수험번호를 정확히 기재하시오.
- 답안은 **반드시 검정색 필기구(볼펜, 샤프, 연필) 중 1가지로만 작성하시오.**
- 답안지에 주어진 문항 번호에 맞추어 답안을 작성하고, <u>반드시 답안에 주어진 테두리 안에</u> 답안을 작성하시오(범위에서 벗어난 답안은 채점 대상에서 제외함).
- 답안 수정 시 원고지 사용법에 따르시오(지우개 사용 가능, 수정액 사용 불가).
- 답안지에는 수험번호, 성명 등 답안과 관련이 없는 내용은 어떤 것도 쓰지 마시오(기재 시 "0"점 처리함).
- 연습은 문제지 여백을 이용하시오.

고려대학교 세종캠퍼스 2022학년도 수시 논술고사 모의문제(자연계열 I-일반)

1. x에 관한 이차방정식 $x^2 - 3x + k^2 - 1 = 0$ 의 두 근 α, β 에 대하여 $\alpha^2 - 2\alpha\beta + \beta^2 = 2$ 이 성립할 때, 양수 k의 값을 구하시오. [20점]


3. 다음 명제가 참이 되도록 하는 k의 최솟값을 구하시 오. [40점]

함수 $y=\sqrt{x}$ 의 그래프 위의 두 점 P(a,b) Q(c,d)에 대하여 $\sqrt{bd}=\frac{1}{2}$ 일 때, 직선 PQ의 기울 기는 k보다 작다. (단, 0<a<c이다.)

2. 원 $x^2 + y^2 = 25$ 위의 한 점 P(a,b)에서의 접선이 x축과 만나는 점을 Q라 하자. 삼각형 OPQ의 넓이가 $9\frac{3}{8}$ 이고, 점 Q를 지나고 접선에 수직인 직선이 y축과 만나는 점의 좌표가 $(0,-4\frac{11}{16})$ 일 때, ab의 값을 구하시오. (단, a,b는 양수이고, 점 O는 원점이다.) [20점]

- **4.** 이차함수 y = f(x)가 다음 조건을 만족시킬 때, f(x)를 구하시오. [50점]
- $(7) \lim_{x \to 0} \frac{e^{\sin x} 1}{2f(x)} = 3$
- (나) $\lim_{x \to \infty} \frac{f(x)}{x^3 \{\ln(x) \ln(x+1)\}} = 2$
- 5. 다음 그림과 같이 한 변의 길이가 2인 정사각형 ABCD 내에 주어진 반원 0에 대해 0 위의 점 E와 \overline{CD} 위의 점 F가 존재할 때, $\angle EBC = \angle FBE = \theta$ 를 만 족한다. 이때 부채꼴 OCE의 넓이를 $S_1(\theta)$, 삼각형 BEF의 넓이를 $S_2(\theta)$ 라 할 때, $\lim_{\theta \to 0+} \frac{S_2(\theta)}{S_1(\theta)}$ 의 값을 구하시오. [40점]

6. 원점에서 동시에 출발하여 수직선 위를 움직이는 점 P, Q 가 있다. 두 점의 시각 t 에서의 속도 f(t), g(t)는 각각 $f(t) = -\frac{1}{2}t^2 + 3t$, g(t) = t 라고 한다.

원점을 출발한 후 두 점이 다시 만날 때까지 두 점 사이의 거리의 최댓값은 k 이고 그 때의 시간은 t_1 이다. t_1 이후 두 점 사이의 거리가 k 가 되는 시각을 t_2 이라 할 때, $t_1 + t_2^3 - 6t_2^2$ 의 값을 구하시오. [40점]

$$y = x^2$$
, $y = 3 - 2x^2$.

그 입체를 y축에 수직인 평면으로 자른 단면이 항상 반원 모양일 때 입체의 부피를 구하시오. [40점]

2022학년도 수시 논술고사 모의문제(자연계열 I - 일반)

- 8. 5 이상의 모든 자연수 n에 대하여 다음 부등식이 성립함을 수학적 귀납법으로 증명하시오. [50점] $2n-3 \le 2^{n-2}$
- 9. 6일 동안 국어, 영어, 수학을 공부하는 계획표를 작성하는데 각 과목을 공부하는 횟수는 모두 같고 하루에 두 과목씩 공부하려고 한다. 예를 들면, 다음과 같이 계획표를 작성할 수 있다.

	1일차	2일차	3일차	4일차	5일차	6일차
1교시	국어	국어	영어	국어	수학	수학
2교시	영어	영어	수학	수학	국어	영어

만들 수 있는 계획표의 경우의 수가 $a \times 2^b$ 일 때, 두 자연수 a, b에 대하여 a+b의 값을 구하시오. (단, a는 홀수이다.) [50점]

고려대학교 세종캠퍼스 2022학년도 수시 논술고사 모의문제 출제의도, 채점기준 및 예시답안

자연계열 I

[문제 1]

ㅁᇵ띻	문제 1		문항 배점	총 20점		
문항번호	군세 		예상 소요시간	전체 90분 중 5분		
출제범위	과목명	수학				
물게 담 ㅠ	핵심개념 및 용어	이차방정식, 근	근과 계수와의 관계	4		
출제의도	이차방정식의 근과 :	이차방정식의 근과 계수와의 관계를 이해하고 있는지 확인한다.				
문항해설	이차방정식의 근과 :	이차방정식의 근과 계수와의 관계를 활용하여, 주어진 조건식과의 연립방정식을 푼다.				
		j	해점 기준		배점	
	$x^2 - 3x + k^2 - 1 = 0$ 9 $\alpha + \beta = 3$ $\alpha\beta = k^2 - 1$ 의 두 관계식을 유도		- ①	과 계수의 관계로부터	7점	
채점기준	α² - 2αβ + β² = (α + β)² - 4αβ를 이용하여 주어진 조건식을 정리하여 (α+β)² - 4αβ = 2 을 유도하고 ①, ②를 ③에 대입하여 3² - 4(k² - 1) = 2 을 이끌어내면 10점 (별해) ①, ②, ③을 연립하여 k에 대한 이차방정식을 유도하면 10점					
	k 가 양수라는 조건에 의하여 $k=rac{\sqrt{11}}{2}$ 을 찾으면 ${f 3A}$					
예시답안 (정답)			- 1	· 계수의 관계로부터		

단계2.

 $\alpha^2-2\alpha\beta+\beta^2=(\alpha+\beta)^2-4\alpha\beta$ 를 이용하여 주어진 조건식을 정리하면 $(\alpha+\beta)^2-4\alpha\beta=2\qquad 3$ 이고 이고 (1), ②를 ③에 대입하면 $3^2-4(k^2-1)=2$ 이다.

단계3.

k가 양수라는 조건에 의하여 $k=\frac{\sqrt{11}}{2}$ 이다.

[문제 2]

ㅁ취미루	문제 2		문항 배점	총 20점	
문항번호			예상 소요시간	예상 소요시간 전체 90분 중 5분	
출제범위	과목명	수학			
돌세러지	핵심개념 및 용어	도형의 방정식	l, 근의 공식		
출제의도	원의 접선의 방정식	을 이해하는지를	를 확인한다.		
문항해설	원의 접선의 방정식 공식을 이용하여 삼각형 넓이 조건으로부터 점의 좌표를 구한다.				
		;	채점 기준		배점
	원 $x^2+y^2=25$ 위의 점 $\mathrm{P}(a,b)$ 에서의 접선의 방정식 $ax+by=25$ 를 구하면 $\mathbf{3A}$				
채점기준	점의 좌표값과 삼각형의 넓이조건으로부터 $\frac{1}{2}\times\frac{25}{a}\times b=9\frac{3}{8}$ 을 유도하면 7점			7점	
수직이 되는 기울기 조건을 이용하여, 수직이 되는 직선의 방정 $y=rac{3}{4}x-rac{75}{16}$ 를 구하고 $a=4,\ b=3$ 와 $ab=12$ 를 구하면 10점				이 되는 직선의 방정식	10점

단계1

원 $x^2+y^2=25$ 위의 점 $\mathrm{P}(a,b)$ 에서의 접선의 방정식은 ax+by=25 --- ① 이다.

단계2.

이 접선의 방정식과 x축과의 교점은 ①에서 y=0일 때 이므로 점Q의 좌표는 $\mathrm{Q}(\frac{25}{a},0)$ 이다. 그러므로 삼각형의 넓이조건으로부터 $\frac{1}{2}\times\frac{25}{a}\times b=9\frac{3}{8}\quad ---\quad ② \ \text{이 성립한다}.$

예시답안 (정답)

단계3

수직인 두 직선의 기울기 관계로부터, 접선에 수직인 직선의 기울기는 $\frac{b}{a}$ 이다. 여기서 ②로부터 $\frac{b}{a}=\frac{3}{4}$ 을 구할 수 있다. 그러므로 직선의 방정식 $y=\frac{3}{4}x-\frac{75}{16}$ 가 된다.

단계3

이 직선이 Q $(\frac{25}{a},0)$ 을 지나므로 a=4이다. 그러므로 b=3이고 ab=12이다.

[문제 3]

문항번호	문제 3		문항 배점	총 40점	
표용단호	군세 3 		예상 소요시간	전체 90분 중 10분	
출제 범위	과목명	수학			
물제임기	핵심개념 및 용어	핵심개념 및 용어 기울기, 절대부등식, 명제의 진리집합			
출제의도	기울기의 개념을 이 절대부등식을 이해ㅎ				
문항해설	함수의 그래프 위에 있는 두 점 사이의 기울기를 표현하고, $\sqrt{bd}=\frac{1}{2}$ 이라는 주어진 조 건으로부터 표현된 기울기 값의 범위를 절대부등식을 이용해 구한다.				
		j	해점 기준		배점
채점기준	함수 $y = \sqrt{x}$ 위의	두 점 $P(a,b)$,	Q(c,d) 사이의 기	울기는 $\frac{d-b}{c-a}$ 이다.	10점

	(해설)	
	두 점사이의 기울기를 $\dfrac{d-b}{c-a}$ 로 나타내면 $oldsymbol{10A}$	
	_	
	이 값은 $y=\sqrt{x}$ 위의 점들이므로 $b^2=a,\ d^2=c$ 를 만족한다. 따라서 기울기	
	는 $\frac{d-b}{c-a} = \frac{d-b}{d^2-b^2} = \frac{1}{d+b}$ 이 된다. $(b \neq d)$	1011
	(해설)	10점
	기울기를 함수에 대입하여 $\dfrac{1}{d+b}$ 의 형태로 나타내면 $oldsymbol{10A}$	
	절대부등식에 의해 $b \neq d$ 인 경우, $b+d>2\sqrt{bd}$ 이므로 $\frac{1}{d+b}<\frac{1}{2\sqrt{bd}}=1$ 이	
	다.	
	즉 기울기 < 1 이다. (해설)	10점
	주어진 조건, $\sqrt{bd}=rac{1}{2}$ 과 절대부등식에 의하여 기울기가 1보다 작음을 보이	
	면 10점	
	(명제) 직선 PQ 의 기울기는 k 보다 작다	
	위 명제를 만족시키는 k 가 될 수 있는 값의 집합인 진리집합은 1 이상의 모	
	든 실수이다. 명제의 진리집합의 최솟값이 k 가 될 수 있는 숫자 중 최솟값이고 그 값은 1	
	이다.	10점
	(해설)	10 🛮
	주어진 조건을 명제로 단순화하면 아래의 명제가 된다. $(명제)$ 직선 PQ 의 기울기는 k 보다 작다.	
	이 명제를 만족하는 진리집합은 $\{k k\geq 1$ 인 실수 $\}$ 이고, 이 집합의 원소 중가장 작은 값이 1임을 도출하면 $10점$	
	단계1.	
	함수 $y=\sqrt{x}$ 위의 두 점 $\mathrm{P}(a,b),\ \mathrm{Q}(c,d)$ 사이의 기울기는 $\dfrac{d-b}{c-a}$ 이다.	
	단계2.	71.0
	이 값은 $y=\sqrt{x}$ 위의 점들이므로 $b^2=a,\ d^2=c$ 를 만족한다. 따라서 $d-b$ $d-b$ 1 의 되고 $(c-a)$	기울기는
예시답안 (정답)	$\frac{d-b}{c-a} = \frac{d-b}{d^2-b^2} = \frac{1}{d+b} \text{ ol } 된다. (b \neq d)$	
	단계3.	
	절대부등식에 의해 $b \neq d$ 인 경우, $b+d>2\sqrt{bd}$ 이므로 $\frac{1}{d+b}<\frac{1}{2\sqrt{bd}}=1$ 이다.	
	즉 기울기 < 1이다.	
	단계4.	

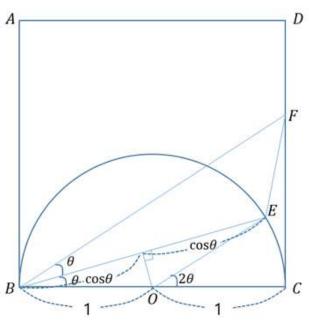
(명제) 직선 PQ의 기울기는 k보다 작다 위 명제를 만족시키는 k가 될 수 있는 값의 집합인 진리집합은 1 이상의 모든 실수이다. 명제의 진리집합의 최솟값이 k가 될 수 있는 숫자 중 최솟값이고 그 값은 1이다.

[문제 4]

ㅁ횗띠흦			문항 배점	총 50점	
문항번호	│ 문제 4 │		예상 소요시간	전체 90분 중 15분	
출제 범위	과목명	수학II, 미적분	수학॥, 미적분		
2/11077	핵심개념 및 용어	함수의 극한			
출제의도	함수의 극한의 극한에 대한 성질을 이해하고 지수함수, 로그함수, 삼각함수의 극한을 활용하여 주어진 함수의 극한을 계산하도록 한다.				
	조건식들을 활용하0	후 2차함수의 계	수를 찾는 문제이	다.	
	조건(가)에서 $\frac{0}{0}$ 꼴에	서의 극한값의	존재성을 이용하	고, (좌변)을 정리하여 극한	값이 3이
문항해설					
		j	해점 기준		배점
	$f(x) = ax^2 + bx + c \ (a \neq 0, a, b, c$ 는 상수) 라 놓으면 5점				
	조건 (7) 에서 $x \to 0$ 일 때, $(분자) \to 0$ 인데 0 이 아닌 극한값이 존재하므로 $(분모) \to 0$ 이고 따라서 $\lim_{x \to 0} f(x) = c = 0$ 임을 구하면 10점				
채점기준	$f(x) = ax^{2} + bx \text{ of}$ $\lim_{x \to 0} \frac{e^{\sin x} - 1}{2f(x)} = \lim_{x \to 0} \frac{e^{\sin x} - 1}{\sin x} \times \frac{1}{\sin x}$ $= \lim_{x \to 0} \frac{e^{\sin x} - 1}{\sin x} \times \lim_{x \to 0} \frac{e^{\sin x} - 1}{\sin x} \times \lim_{x \to 0} \frac{1}{\sin x} = $	$\frac{e^{\sin x} - 1}{2(ax^2 + bx)}$ $\frac{\sin x}{x} \times \frac{x}{2(ax^2 + bx)}$ $\lim_{x \to 0} \frac{\sin x}{x} \times \lim_{x \to 0} \frac{1}{2(ax^2 + bx)}$	$\frac{x}{(ax^2 + bx)} = \frac{1}{2b}$		15점
	$f(x) = ax^{2} + \frac{1}{6}x \equiv$ $\lim_{x \to \infty} \frac{ax^{2} + \frac{1}{6}}{x^{3} \{\ln(x) - \ln(x)\}}$ $= \lim_{x \to \infty} \frac{ax + \frac{1}{6}}{x} \times \lim_{x \to $	$\frac{x}{(x+1)}$	입하여 정리하여		15점

	$= \lim_{x \to \infty} \frac{ax+b}{x} \times \lim_{x \to \infty} \frac{1}{-\ln\left(1+\frac{1}{x}\right)^x} = -a$			
	이 되고, $-a=2$ 에서 $a=-2$ 을 구하면 15점			
	$f(x) = -2x^2 + \frac{1}{6}x$ 을 구하면 5점	5점		
	단계1. $f(x)$ 는 이차함수이므로 $f(x)=ax^2+bx+c \ (a\neq 0,a,b,c$ 는 상수)라 놓자.			
	단계2. 조건 (가)에서 $x\to 0$ 일 때, (분자) $\to 0$ 인데 0 이 아닌 극한값이 존재하므로 (분모) $\to 0$ 이 되기 때문에, $\lim_{x\to 0}f(x)=c=0$ 이다.			
	단계3. $f(x) = ax^2 + bx \text{ of } \text{대해서 (가)를 정리하면,}$ $\lim_{x \to 0} \frac{e^{\sin x} - 1}{2f(x)} = \lim_{x \to 0} \frac{e^{\sin x} - 1}{2(ax^2 + bx)}$ $= \lim_{x \to 0} \left\{ \frac{e^{\sin x} - 1}{\sin x} \times \frac{\sin x}{x} \times \frac{x}{2(ax^2 + bx)} \right\}$ $= \lim_{x \to 0} \frac{e^{\sin x} - 1}{\sin x} \times \lim_{x \to 0} \frac{\sin x}{x} \times \lim_{x \to 0} \frac{x}{2(ax^2 + bx)} = \frac{1}{2b}$ 이 되고, $\frac{1}{2b} = 3$ 에서 $b = \frac{1}{6}$ 이다.			
예시답안 (정답)	단계4. $f(x) = ax^2 + \frac{1}{6}x \equiv \text{조건 (나)에 대입하여 정리하면,}$ $\frac{ax^2 + \frac{1}{6}x}{\lim_{x \to \infty} \frac{x^3 \{\ln(x) - \ln(x+1)\}}{x^3 \{\ln(x) - \ln(x+1)\}}}$ $= \lim_{x \to \infty} \frac{ax + \frac{1}{6}}{x} \times \lim_{x \to \infty} \frac{1}{x \ln(\frac{x}{x+1})}$ $= \lim_{x \to \infty} \frac{ax + b}{x} \times \lim_{x \to \infty} \frac{1}{-\ln(1 + \frac{1}{x})^x} = -a$ 이 되고, $-a = 2$ 에서 $a = -2$ 이다. 단계5. 그러므로 $f(x) = -2x^2 + \frac{1}{6}x$ 이다.			
	단계1. (5점) $f(x) \vdash \text{이차함수이므로, } f(x) = ax^2 + bx + c \ (a ≠ 0, a, b, c \vdash 상수) 라 놓자.$			

단계2. (15점)
$$f(x) = ax^2 + bx + c \equiv \text{ \mathbb{Z}} \text{건} \text{ (나)} \text{에 대입하여 정리하면,} \\ \lim_{x \to \infty} \frac{ax^2 + bx + c}{x^3 \{\ln(x) - \ln(x+1)\}} \\ = \lim_{x \to \infty} \frac{ax^2 + bx + c}{x^2} \times \lim_{x \to \infty} \frac{1}{x \ln(\frac{x}{x+1})} \\ = a \times \lim_{x \to \infty} \frac{1}{-\ln(1 + \frac{1}{x})^x} = -a \\ \text{이 되고, } -a = 2 \text{ 에서 } a = -2 \text{ 이다.} \\ \text{단계3. (10점)} \\ \text{조건 (7)} \text{에서 } x \to 0 \text{일 때, 분모의 국한이 0 이므로, } \lim_{x \to 0} f(x) = c = 0 \text{ 이다.} \\ \text{단계4. (15점)} \\ f(x) = -2x^2 + bx \text{ 에 대해서 (7)} \equiv \text{ 점리하면,} \\ \lim_{x \to 0} \frac{e^{\sin x} - 1}{2f(x)} = \lim_{x \to 0} \frac{e^{\sin x} - 1}{2(-2x^2 + bx)} \\ = \lim_{x \to 0} \left\{ \frac{e^{\sin x} - 1}{\sin x} \times \frac{\sin x}{x} \times \frac{x}{2(-2x^2 + bx)} \right\} \\ = \lim_{x \to 0} \frac{e^{\sin x} - 1}{\sin x} \times \lim_{x \to 0} \frac{\sin x}{x} \times \lim_{x \to 0} \frac{x}{2(-2x^2 + bx)} = \frac{1}{2b} \\ \text{이 되고, } \frac{1}{2b} = 3 \text{ 에서 } b = \frac{1}{6} \text{ orc.} \\ \text{단계5. (5점)} \\ \text{그러므로} \qquad f(x) = -2x^2 + \frac{1}{6}x \text{ orc.}$$


[문제 5]

문항번호	- - 문제 5		문항 배점	총 40점	
_ 포용된호 	군세 3 		예상 소요시간	전체 90분 중 10분	
출제범위	과목명	미적분			
돌세금파	핵심개념 및 용어	삼각함수, 극현	<u>.</u>		
출제의도	삼각함수를 이용해 도형의 각 변의 길이 및 넓이를 계산하고 삼각함수의 극한의 개념을 활용할 수 있는지 확인한다.			개념을	
문항해설	이를 <i>θ</i> 의 관한 식으 그 후, 삼각함수의	부채꼴의 중심각을 이용해 부채꼴의 넓이를 유도하고, 주어진 각도 θ 로부터 각 변의 길이를 θ 의 관한 식으로 표현 후, 삼각형의 넓이를 표현할 수 있는지 확인하고자 한다. 그 후, 삼각함수의 극한 $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$ 을 이용해 주어진 극한값을 계산할 수 있는지 확			
	인하는 문제이다.				
채점기준		:	채점 기준		배점

단계1. 그림과 함께 \overline{BC} 의 길이와 부채꼴 OCE의 중심각을 θ 에 관한 식으로 각각 $2\cos\theta$ 와 2θ 로 표현하면 $10점$	10점
단계2. 부채꼴 OCE의 넓이 $S_1(\theta)$ 을 θ 에 관한 식 θ 로 표현하면 $\mathbf{5A}$	5점
단계3. 삼각형 BCF에서 \overline{BF} 의 길이를 $\frac{2}{\overline{BF}} = \cos 2\theta$ 의 식을 이용해 $\frac{2}{\cos 2\theta}$ 로	10점
표현하면 10점	
단계4. 삼각형 $S_2(\theta)$ 의 넓이를 두 변의 길이와 끼인각을 활용해 $\frac{1}{2} \times 2 \cos \theta \times \frac{2}{\cos 2\theta} \times \sin \theta$ 로 표현하면 $\mathbf{5A}$	5점
단계5. $\lim_{\theta \to 0+} \frac{S_2(\theta)}{S_1(\theta)} = \lim_{\theta \to 0+} \frac{\frac{1}{2} \times 2\cos\theta \times \frac{2}{\cos 2\theta} \times \sin\theta}{\theta} = \lim_{\theta \to 0+} \frac{2\sin\theta\cos\theta}{\theta\cos 2\theta} = 2$ 을 $\lim_{\theta \to 0} \frac{\sin\theta}{\theta} = 1$ 를 통해 구하면 10점	10점
단계1.	

다음 그림과 같이 $\overline{\rm BE}$ 의 길이와 부채꼴 OCE의 중심각을 θ 에 관한 식으로 각각 $2\cos\theta$ 와 2θ 로 표현한다.

예시답안 (정답)

단계2.

부채꼴 OCE가 반지름이 1이고 중심각이 2θ 이기 때문에 부채꼴 OCE의 넓이 $S_1(\theta) = \frac{1}{2} \times 1^2 \times 2\theta = \theta$ 이다.

단계3.

또한 삼각형 BCF에서
$$\frac{2}{\overline{\mathrm{BF}}} = \cos 2\theta$$
 이므로 $\overline{\mathrm{BF}} = \frac{2}{\cos 2\theta}$ 이다.

단계4.
따라서, 삼각형 $S_2(\theta)$ 의 넓이는 $\frac{1}{2} \times 2\cos \theta \times \frac{2}{\cos 2\theta} \times \sin \theta$ 이고,

단계5.
$$\lim_{\theta \to 0+} \frac{S_2(\theta)}{S_1(\theta)} = \lim_{\theta \to 0+} \frac{\frac{1}{2} \times 2\cos \theta \times \frac{2}{\cos 2\theta} \times \sin \theta}{\theta} = \lim_{\theta \to 0+} \frac{2\sin \theta \cos \theta}{\theta \cos 2\theta} = 2$$
이다.

정답: 2

[문제 6]

ㅁᇵ띻			문항 배점	총 40점	
문항번호	문제 6 		예상 소요시간	전체 90분 중 10분	
출제범위	과목명	수학II			
할게라파	핵심개념 및 용어	속도, 위치, 0	[동거리		
출제의도	정적분의 활용으로	속도와 거리의	관계를 정확히 이	해하고 있는지를 확인한다.	
문항해설	속도는 이동거리와 방향을 나타낸다. 속도의 함수가 주어졌을 때, 그의 정적분을 이용하여 점의 위치의 함수를 찾고 이것으로 문제를 풀 수 있다.			을 이용하	
		채점 기준			
	점 P의 시각 t 에서	의 위치를 <i>F(t)</i>)라고 하면		
	$F(t) = \int_0^t \left(-\frac{1}{2}t^2 + 3t \right) dt = -\frac{1}{6}t^3 + \frac{3}{2}t^2 0 \mathbb{Z},$				
	점 Q의 위치를 $G(t)$ 라고 하면				
	$G(t)=\int_0^t t\ dt=rac{1}{2}t^2$ 을 계산하면 5점				
	두 점이 만나는 시각은 $F(t)=G(t)$ 를 만족하는 시간이므로 이를 계산하면,				
채점기준	$\left -\frac{1}{6}t^2(t-9) = \frac{1}{2}t^2$ 이고 이 방정식의 근은 $t=0,6$ 이다.				10점
세터기正 	그러므로 두 점은 출발 이후 시각 $t=6$ 에서 만남을 구하면 10 점				
	$ F(t)-G(t) = -\frac{1}{6}t^3+\frac{3}{2}t^2-\frac{1}{2}t^2 = -\frac{1}{6}t^3+t^2 \text{of } M \in \mathbb{R}$				
	$Q(t) = F(t) - G(t) $ 라 두면 $0 \le t \le 6$ 에서				
	$Q'(t) = -\frac{1}{2}t^2 + 2t = -\frac{1}{2}t(t-4)$ 이기 때문에 $t=4$ 에서 최댓값을 갖는다.				
	즉 $t=4$ 에서 두 점 사이의 거리는 최댓값을 갖고, 그 최댓값은 $Q(4)=rac{16}{3}$				
	이다. 그러므로 $t_1=$	4를 구하면 10	점	Ğ	

	$t\geq 6$ 에서 $Q(t)=rac{1}{6}t^3-t^2$ 이므로, 시각 t_2 은	10점			
	$Q(t_2) = \frac{1}{6}(t_2)^3 - (t_2)^2 = \frac{16}{3}$ ① 을 유도하면 10점	100			
	식①로부터 $t_1+(t_2)^3-6(t_2)^2=36$ 을 계산하면 5점	5점			
	단계1. 점 P는 속도가 $f(t) = -\frac{1}{2}t^2 + 3t$ 이므로 시각 t 에서의 위치를 $F(t)$ 라고 하면				
	$F(t) = \int_{0}^{t} \left(-\frac{1}{2}t^{2} + 3t \right) dt = -\frac{1}{6}t^{3} + \frac{3}{2}t^{2} \text{ olch.}$				
	그리고 점 Q는 속도가 $g(t)=t$ 이므로 시각 t 에서의 위치를 $G(t)$ 라고 하면				
	$G(t) = \int_0^t t dt = \frac{1}{2} t^2 \text{ol} \text{ch.}$				
	│ │단계2.				
	두 점이 만나는 시각은 $F(t) = G(t)$ 를 만족하는 시각이므로 이를 계산하면,				
	$\left -\frac{1}{6}t^2(t-9) = \frac{1}{2}t^2$ 이고 이 방정식의 근은 $t=0$ 또는 $t=6$ 이다.				
	그러므로 두 점은 출발 이후 시각 $t=6$ 에서 다시 만난다.				
	단계3.				
	두 점이 만나는 시각 $t=6$ 이전의 두 점의 거리의 최댓값은 $ F(t)-G(t) $ $(t\leq 0.00000000000000000000000000000000000$	(6)의 최			
예시답안	$ F(t) - G(t) = -\frac{1}{6}t^3 + \frac{3}{2}t^2 - \frac{1}{2}t^2 = -\frac{1}{6}t^3 + t^2 $ 이므로				
(정답)	$0 \le t \le 6$ 일 때 이 함수의 미분을 이용하여 최댓값을 갖는 시각을 $Q(t) = F(t) - G(t) $ 라 두면 $0 \le t \le 6$ 에서	구한다.			
	$Q'(t) = -\frac{1}{2}t^2 + 2t = -\frac{1}{2}t(t-4)$ 이기 때문에 $t=4$ 에서 최댓값을 갖는다.				
	그러므로 $t_1=4$ 이다. 그리고 최댓값은 $Q(4)=\frac{16}{3}$ 이므로 $k=\frac{16}{3}$ 이다.				
	│ │단계4				
	$t\geq 6$ 에서 두 점사이의 거리가 $\dfrac{16}{3}$ 이 되는 시각은 $Q(t)=\dfrac{16}{3}, (t\geq 6)$ 을	만족한다.			
	즉, $t\geq 6$ 에서 $Q(t)=rac{1}{6}t^3-t^2$ 이므로, 시각 t_2 는				
	$Q(t_2) = \frac{1}{6}t_2^3 - t_2^2 = \frac{16}{3} - \dots $				
	을 만족한다.				
	단계5				
	식 ①로부터 $t_2^{\ 3}-6t_2^2=32$ 를 알 수 있고,				
	그러므로 $t_1 + t_2^3 - 6t_2^2 = 36$ 이다.				

[문제 7]

ㅁ됬띠충	묘ᅰᅎ		문항 배점	총 40점		
문항번호	│ 문제7 │		예상 소요시간	전체 90분 중 10분		
출제 범위	과목명	미적분				
돌세금파	핵심개념 및 용어	정적분의 활용	+, 입체도형의 부피	1		
				l는지 확인한다. 좌표축에 수		
출제의도		면으로 자른 입체도형의 단면적을 알 때 입체도형의 부피를 정적분으로 표시할 수 있음 을 알고 있는지 확인한다.				
	두 이차함수 그래프의 교점을 구하여 입체도형의 바닥면의 형태를 결정한다. 즉, y 가					
				$y\!=\!3\!-\!2x^2$ 이 바닥면의 둘		
문항해설	'	V		류은 두 이차곡선의 x 값으로		
	하고, 입체의 부피는 단면이 되는 반원의 넓이를 적분한 값이다.					
		j	해점 기준		배점	
채점기준	식을 연립하여 풀면 $x^2=3-2x^2,\ 3x^2=5$ 따라서 교점은 $(1,1)$ 그러므로 y 가 $[0,1]$ 이 바닥면의 둘레가 $(해설)$ 두 이차함수를 연립	구할 수 있다. $=3$, $x=\pm 1$, $(-1,1)$ 임을 9 구간에서는 y 된다.	알 수 있다. $=x^2$ 이 y 가 [1,3 하면 10점	$y=3-2x^2$ 의 교점은 두	10점	
	되는 반원의 반지름· $\begin{cases} \sqrt{y} & (0 \le y \le 1) \\ \sqrt{\frac{3-y}{2}} & (1 \le y \le 1) \\ 0 \ge y + y \le 1 \end{cases}$ 임을 알 수 있다.	은 두 이차함수 1) 3)	의 x 값으로부터	축에 수직인 입체의 단면이 의 반지름을 구하면 15점	15점	

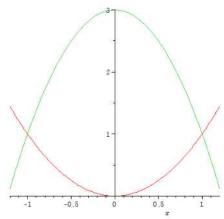
따라서 구하는 입체의 부피는 단면적을 적분한 값으로 다음과 같다.

$$V = \int_0^1 \frac{\pi}{2} (\sqrt{y})^2 dy + \int_1^3 \frac{\pi}{2} \left(\sqrt{\frac{3-y}{2}} \right)^2 dy$$

$$= \frac{\pi}{2} \left[\frac{y^2}{2} \right]_0^1 + \frac{\pi}{2} \left[\frac{3y}{2} - \frac{y^2}{4} \right]_1^3$$

$$= \frac{\pi}{4} + \frac{\pi}{2} \left\{ \left(\frac{9}{2} - \frac{9}{4} \right) - \left(\frac{3}{2} - \frac{1}{4} \right) \right\}$$

$$= \frac{\pi}{4} + \frac{\pi}{2} \left(\frac{9}{4} - \frac{5}{4} \right)$$


$$= \frac{3\pi}{4}$$

15점

(해설)

입체도형의 부피를 단면적인 반원의 넓이를 적분한 값으로 구하면 15점

단계1.

위 그림에서 나타낸 두 이차함수, $y=x^2$, $y=3-2x^2$ 의 교점은 두 식을 연립하여 풀 면 구할 수 있다.

예시답안 (정답)

$$x^2 = 3 - 2x^2$$
, $3x^2 = 3$, $x = \pm 1$

따라서 교점은 (1,1), (-1,1)임을 알 수 있다.

그러므로, y 가 [0,1] 구간에서는 $y=x^2$ 이 y 가 [1,3] 구간에서는 $y=3-2x^2$ 이 바닥면 의 둘레가 된다.

단계2.

두 곡선이 y축과 만나는 점은 (0,0),(0,3)이고 y축에 수직인 입체의 단면이 되는 반원 의 반지름은 두 이차함수의 x값으로부터

$$\begin{cases} \sqrt{y} & (0 \le y \le 1) \\ \sqrt{\frac{3-y}{2}} & (1 \le y \le 3) \end{cases}$$

임을 알 수 있다.

단계3

따라서 구하는 입체의 부피는 단면적을 적분한 값으로 다음과 같다.

$$V = \int_0^1 \frac{\pi}{2} (\sqrt{y})^2 dy + \int_1^3 \frac{\pi}{2} \left(\sqrt{\frac{3-y}{2}} \right)^2 dy$$

$$= \frac{\pi}{2} \left[\frac{y^2}{2} \right]_0^1 + \frac{\pi}{2} \left[\frac{3y}{2} - \frac{y^2}{4} \right]_1^3$$

$$= \frac{\pi}{4} + \frac{\pi}{2} \left\{ \left(\frac{9}{2} - \frac{9}{4} \right) - \left(\frac{3}{2} - \frac{1}{4} \right) \right\}$$

$$= \frac{\pi}{4} + \frac{\pi}{2} \left(\frac{9}{4} - \frac{5}{4} \right)$$

$$= \frac{3\pi}{4}$$

[문제 8]

문항번호	문제 8		문항 배점 총 50점		
			예상 소요시간	시간 전체 90분 중 15분	
출제범위	과목명	수학			
	핵심개념 및 용어	수학적 귀납법			
출제의도	수학적 귀납법을 정확히 이해하고 활용할 수 있는가를 확인한다.				
문항해설	n 이 5 이상인 경우 주어진 부등식이 성립함을 수학적 귀납법을 사용하여 증명하는 문제이다.				
채점기준		ź	해점 기준		배점
	(i) $n=5$ 일 때 주어진 부등식이 성립함을 보이면 10 점 예시 : $($ 좌변 $)$ 은 $2 \times 5 - 3 = 7$ 이고 $($ 우변 $)$ 은 $2^{5-2} = 2^3 = 8$ 이므로 부등식이 성립함을 보이면				
	(ii) $k \geq 5$ 일 때, $2k-3 \leq 2^{k-2}$ 이 성립함을 가정하고 $2(k+1)-3 \leq 2 \times 2^{k-2}$ 이 성립함을 보이면 ${f 30A}$				
	그러므로, (i),(ii) 에 따라, 수학적 귀납법에 의하여, $n\geq 5$ 인 모든 자연수 n 에 대하여 주어진 부등식이 성립한다고 설명하면 $10점$				
예시 답 안 (정 답)	 단계1. (i) n = 5일 때, 좌변은 2×5 - 3 = 7 이고, 우변은 2⁵⁻² = 2³ = 8이므로 부등식은 성립한다. 단계2. (ii) n = k(k ≥ 5) 일 때, 주어진 부등식이 성립한다고 가정하면				

[문제 9]

문항번호	문제 9		문항 배점 총 50점			
			예상 소요시간	전체 90분 중 10분		
출제 범위	과목명	수학				
	핵심개념 및 용어	경우의 수				
출제의도	순열과 조합을 개념을 각각 이해하고 있으며 이를 함께 이용하여 경우의 수를 계산힐수 있는지 확인한다.					
문항해설	조합을 이용하여 세 과목의 경우의 수를 순차적으로 계산한다. 각 요일 안에서 순열을 계산하여 요일별 경우의 수를 계산한다. 두 단계의 경우의 수를 곱하여 최종 결과를 계산한다.					
채점기준		j	해점 기준		배점	
	6일 동안 세 과목 국어, 영어, 수학 중에서 하루에 두 과목씩, 각 과목을 공부하는 횟수가 같도록 계획표를 작성하려면 국어, 영어, 수학 모두 4일씩 공부해야 한다. 6일 중에서 국어를 공부하는 4일을 택하는 방법의 수는 ${}_6C_4={}_6C_2=\frac{6\times 5}{2\times 1}=15$					
	하루에 두 과목씩 공부하려면 국어를 공부하지 않는 2일은 영어, 수학을 공부해야 하므로 국어를 공부하는 4일 중에서 영어를 공부하는 2일만 택하면 되고 그 방법의 수는 ${}_4C_2=\frac{4\times 3}{2\times 1}=6$					
	하루에 공부하는 두 과목을 1교시, 2교시에 배정하는 경우는 1일마다 2가지이므로 각 요일 안에서 순열을 계산하면 그 방법의 수는 2^6					
	단계 1, 단계 2, 단계 3의 결과는 곱사건으로 총 경우의 수는 $15\times 6\times 2^6=45\times 2^7$ 따라서 $a=45,b=7$ 이므로 $a+b=52$					
예시 답안 (정 답)	6일 동안 세 과목 국어, 영어, 수학 중에서 하루에 두 과목씩, 각 과목을 공부하는 횟수가 같도록 계획표를 작성하려면 국어, 영어, 수학 모두 4일씩 공부해야 한다. 6일 중에서 국어를 공부하는 4일을 택하는 방법의 수는 ${}_6C_4 = {}_6C_2 = \frac{6\times 5}{2\times 1} = 15$ 하루에 두 과목씩 공부하려면 국어를 공부하지 않는 2일은 영어, 수학을 공부해야 하므로 국어를 공부하는 4일 중에서 영어를 공부하는 2일만 택하면 되고 그 방법의 수는 ${}_4C_2 = \frac{4\times 3}{2\times 1} = 6$ 이때, 하루에 공부하는 두 과목을 1교시, 2교시에 배정하는 경우는 1일마다 2가지이므로 만들 수 있는 계획표의 방법의 수는 $15\times 6\times 2^6 = 45\times 2^7$ 따라서 $a=45,b=7$ 이므로 $a+b=52$					

MEMO	

고려대학교 세종캠퍼스 KOREA UNIVERSITY SEJONG CAMPUS

LIBERTAS JUSTITIA VERITAS

세종캠퍼스

30019 세종특별자치시 세종로 2511 Tel. 044-860-1900

oku.korea.ac.kr