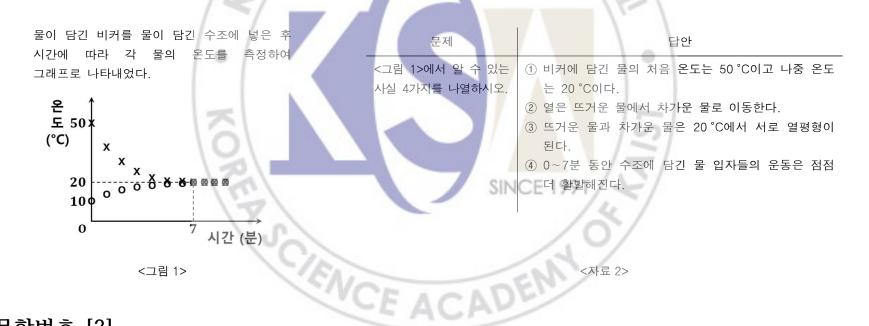
2024학년도 한국과학기술원 부설 한국과학영재학교 신입생 선발 제2단계 창의적문제해결력검사 문제지

※ 모든 문제의 풀이 과정과 답을 답안지에 쓰시오. 문제지에 적힌 내용은 채점되지 않습니다.

문항번호 [1]


영재는 반 친구들이 중학교 과학 교과서 내용 중 몇몇 대단원의 과학 개념을 어려워하는 것을 알게 되었다. 그래서 영재는 <자료 1>에 주어진 대단원에 등장하는 과학 개념을 정리하여 또래 학습 자료로 활용하기로 하였다. 제시된 대단원에 등장하는 과학 개념 중에서 <u>단위가 있는</u> 개념을 최대 20개까지 작성하시오. (단, 답안지에 주어진 예시는 제외한다.)

학년	대단원 제목
1학년	여러 가지 힘, 빛과 파동 전기와 자기, 열과 우리 생활 운동과 에너지
2약년 3학년	선기와 사기, 열과 우리 생활 운동과 에너지

<자료 1>

문항번호 [2]

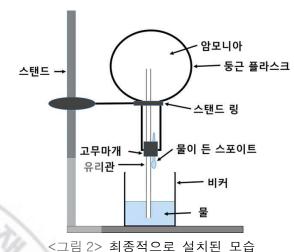
<그림 1>은 뜨거운 물과 차가운 물의 온도 변화 실험에 대한 결과이고 <자료 2>는 <그림 1>에 대한 문제와 답안이다. 영재는 이것을 보고 또래 학습 자료에 열 현상과 관련된 문제를 만들어서 추가하기로 하였다. <u>영재는 계산이 필요 없는 문제 대신에 계산식의</u> 사용이 필요한 문제를 만들기로 하였다. <그림 1>에 대한 문제 2개를 만들고 각 문제에 대한 답안을 구체적으로 제시하시오. (단, 서술형 문제이어야 하고, 문제의 풀이에 계산식이 반드시 포함되어야 한다. 문항번호[1]에서 답한 과학 개념을 활용하여 각 문제별로 문제의 조건을 추가하거나 바꾸어도 좋다. 단순히 동일한 변수의 값을 바꾼 문제는 문제 1개로 간주한다.)

문항번호 [3]

<자료 3>은 일상생활에서 접하는 물건과 물질을 가지고 빛을 활용할 수 있는 방법을 제안한 좋은 사례이다. 주어진 사례처럼 일상생활에서 접하는 물건과 물질을 이용하여 빛을 활용할 수 있는 아이디어를 1가지 제안하고 제안한 아이디어의 과학적 원리를 구체적으로 설명하시오. (단, <자료 4>의 물건과 물질만 사용할 수 있고, 이것을 다 사용할 필요는 없다. <자료 5>의 발상 기법을 참고할 수 있다.)

예시 아이디어	물건과 물질		여러 가지 발상 기법					
투명한 비닐 봉지에 물을	물	더하기	연필 + 지우개	\rightarrow	지우개 달린 연필			
충분히 담아 둥근 모양을	얼음	빼기	날개 달린 선풍기 - 날개	\rightarrow	날개 없는 선풍기			
만들면 볼록 렌즈처럼 햇빛	숟가락	모양 바꾸기	곧은 빨대	\rightarrow	구부릴 수 있는 주름 빨대			
을 한곳으로 모을 수 있다.	냄비 뚜껑 유리컵	크기 바꾸기	우산	\rightarrow	파라솔			
	ㅠ디겁 투명한 페트병	용도 바꾸기	주전자	\rightarrow	물뿌리개			
	종이컵	재료 바꾸기	쇠숟가락	\rightarrow	플라스틱 숟가락			
	색종이	자연물 본뜨기	우엉 열매 갈고리	\rightarrow	밸크로 테이프			
		반대로 하기	뚜껑을 위쪽으로 한 화장품 용기	\rightarrow	뚜껑을 아래쪽으로 한 화장품 용기			
<자료 3>	<자료 4>		<자료 5>		초등학교6 실과 ㈜교학사 참고			

문항번호 [4]


암모니아는 물에 대한 용해도가 큰 물질이다. 영재는 암모니아의 성질을 이용한 분수 실험(분수처럼 물이 뿜어져 나오는 것을 보여주는 실험)을 하였다. 실험 방법은 아래와 같다.

<준비물>

기구: 둥근 플라스크, 시험관, 알코올 램프, 유리관, 스포이트, 비커, 구멍이 2개 뚫린 고무마개, 스탠드, 스탠드 링 재료: 물, 진한 암모니아수

<실험 과정>

- 1. 비커의 $\frac{1}{2}$ 을 물로 채운다.
- 2. 스포이트를 물로 채운다.
- 3. 고무마개에 유리관과 물로 채워진 스포이트를 꽂는다.
- 4. 스탠드 링 위에 둥근 플라스크를 거꾸로 세워서 놓는다.
- 5. 다음 과정에 따라 둥근 플라스크에 암모니아 기체를 모은다.
 - (1) 진한 암모니아수를 시험관에 넣는다.
 - (2) 시험관을 둥근 플라스크 아래에 배치한다.
 - (3) 시험관을 알코올 램프로 가열한 후 발생되는 암모니아 기체를 둥근 플라스크에 모은다.
- 6. 준비된 고무마개를 둥근 플라스크에 꽂고 유리관의 아래쪽은 비커의 물에 잠기도록 한다.
- 7. 스포이트의 물을 둥근 플라스크 속으로 밀어 넣는다.
- 8. 분수가 나타난다.

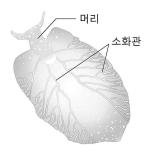
- [4-1] 분수가 나타나는 원리를 과학적 개념을 이용해 서술하시오.
- [4-2] 실험 결과, 분수가 나타나는 것이 관찰되긴 하였으나 분수의 분출 속력이 만족할 정도로 크지 않았다. 본인이 생각하는 분출 속력을 크게 하기 위한 가장 효율적인 방법과 그 원리를 쓰시오.
- [4-3] 영재는 암모니아 대신에 이산화탄소를 이용하여도 같은 분수 실험을 할 수 있는지 알아보고자 하였다. 영재는 선생님에게 이산화 탄소 기체가 담긴 둥근 플라스크를 받은 후, 실험 과정 6~8을 수행하였<mark>다. 그러</mark>나 이 경우에는 분수가 나타나지 않았다. 이산화 탄소를 이용한 분수 실험을 성공하기 위해서는 실험을 어떻게 바꾸어야 할까? 본인이 생각하는 가장 간단한 방법과 그 원리를 적으시오. (단, 이산화탄소 기체는 둥근 플라스크 밖으로 빠져나가지 않는다고 가정한다.)

ENCE ACADEM

문항번호 [5]


중학교 3학년인 영재에게는 초등학교 6학년인 동생 영희가 있다.

- [5-1] 영희는 어느 날 영재에게 "물질이 뭐야?"라고 물었다. 영재는 이에 대해 곰곰이 생각해 본 후 초등학생인 영희가 이해할 수 있도록 약 1분 동안 물질의 정의와 예시를 친절히 설명해 주었다. 영재는 어떻게 답변했을까?
- [5-2] 영재의 대답을 들은 영희는 고개를 끄덕이며 이어서 질문하였다. "공기도 물질이야?" 영재는 이번에는 말로 설명하기보다는 집에서 할 수 있는 간단한 과학적인 실험을 통해 명쾌하게 영희를 이해시키고 싶었다. 집에서 어떤 실험을 하면 될까? (1) 실험 목표와 방법을 구체적으로 서술하시오. 또한 (2) 그 원리를 설명하시오.
- [5-3] 다른 어느 날 영희는 영재에게 또 다른 질문을 하였다. "기름은 불에 잘 타는데, 물은 왜 불이 붙지 않고 오히려 불을 끄는 거야?" 영재는 답하기 전에 영희가 언급한 현상이 나타나는 까닭을 중학교에서 배운 개념들과 연관지어 머릿속으로 추측해 보았다. 어떻게 추측하였을까?


문항번호 [6]

다음 글을 읽고 물음에 답하시오.

- (가) 산호는 여러 개체가 모여 군체를 이루며 사는데, 군체가 성장하면서 산호가 만든 탄산칼슘 구조물이 커지면 거대한 산호초가 형성된다. 산호초를 만드는 산호의 몸속에는 ⊙이라는 단세포 생물이 살고 있다. ⊙은 광합성으로 만든 양분과 산소를 산호에게 제공하고, 산호는 그 대가로 ⊙이 안전하게 살 수 있는 공간과 이산화탄소를 제공한다. 산호는 입과 촉수가 있어 작은 플랑크톤을 잡아먹을 수 있지만 필요한 양분의 대부분은 ⊙에게서 얻는다. 산호가 ⊙으로부터 양분을 받지 못하면 산호초가 커질 수 없으므로 산호초는 물이 맑고 수심이 얕은 열대 바다에 주로 만들어진다. 산호초에는 산소와 먹이가 풍부하고, 복잡한 구조물이 은신처를 제공하여 전 세계 해양 생물종의 약 25%가 살고 있다.
- (나) 광합성을 하는 ②과 ©은 산호초에 서식하는 생물에게 여러 가지 혜택을 준다. 꽃과 씨앗으로 번식하는 ②은 해수에 완전히 잠겨서 자라는데, 해양 생물들에게 넓은 산란지와 서식지를 제공하여 바다의 숲이라고 불린다. 열대나 아열대 해안가와 갯벌에서 자라는 ©은 거대하고 단단한 뿌리 덕분에 높은 파도에도 똑바로 서 있을 수 있다. ⑤의 뿌리는 복잡하게 얽혀있어서 해양 생물의 은신처가 되고, 주변에 먹이가 풍부하여 굴, 게, 새우 등 다양한 생물의 산란지와 서식지가 된다. 일부 어린 물고기들은 ③ 숲이나 ⑥의 뿌리 옆에서 살다가 더 자라면 최종 목적지인 산호초로 이동한다. 또한 ③과 ⑥은 흙이 바다로 씻겨 내려가는 것을 막고 육지에서 유입되는 오염물질을 빠르게 흡수하여 바닷물을 깨끗하게 유지해 준다.

<그림 3> 열대 연안 생태계

<그림 4> ②의 모습

- (다) 북아메리카 동해안의 갯벌이나 얕은 바다에 서식하는 ②은 태어날 때는 피부가 투명하지만 먹이인 해조류로부터 엽록체를 얻기 때문에 자라면서 초록색이 된다. ②은 해조류의 세포벽에 구멍을 내어 내용물을 빨아먹은 뒤, 소화관 내의 세포에 엽록체를 저장한다. 소화관이 온몸에 잎맥처럼 퍼져 있고 몸이 납작하여 ②은 마치 나뭇잎처럼 생겼다. ②은 살아가는 데 필요한 양분을 일부는 광합성으로, 나머지는 먹이에서 얻는데, 실제로 하루 12시간 정도만 햇빛을 쬐면 식물처럼 별도의 먹이 없이도 생존할 수 있다고 한다.
- [6-1] 산호, 〇, ⓒ, ②을 계 수준으로 분류하고, 그렇게 분류한 이유를 <u>윗글에 나와 있는</u> 생물적 특징을 열거하여 설명하시오. 만약 윗글의 내용만으로 분류하기 어려운 경우 그 이유도 설명하시오.
- [6-2] 최근 ① 숲과 © 숲의 파괴가 산호 개체수와 산호초에 서식하는 생물종<mark>의 감소</mark>로 <mark>이</mark>어지는 것이 관찰되었다. 그 이유를 (가)와 (나)에서 근거를 찾아 추론하시오.
- [6-3] 다음은 대한이와 영재의 대화 내용이다. (다)와 <그림 4>에 나타난 @의 형태적 특징을 인간과 비교해 보고, 영재가 왜 이런 대답을 했을지 영재의 생각을 유추하여 논리적으로 서술하시오.

대한: 인간도 외부로부터 엽록체를 이식받아 광합성을 할 수 있다면 식량문제도 해결하고 좋겠다.

영재: 그럴까? 난 인간이 엽록체를 받아 광합성을 할 수 있다고 해도, 광합성만으로 양분을 얻어 살아가는 것은 불가능하다고 생각해.

문항번호 [7]

다음은 대한이와 영재의 대화 내용이다.

대한: 화분의 식물이 죽었어. 왜 죽었지?

영재: 흙에 물이 너무 많아 뿌리가 호흡을 못해서 죽은 거 같아.

대한: 식물도 호흡을 해? 식물은 광합성을 하니까 호흡은 필요 없는 거 아냐?

영재: 식물은 광합성과 호흡이 둘 다 필요해. 왜냐하면 (@

대한: 그런데 광합성처럼 호흡도 잎에서만 일어나는 거 아냐? 🔘 뿌리도 호흡을 해?

- [7-1] 영재는 대한이가 이해하기 쉽게 휴대폰 배터리 사용을 예로 들어 광합성과 호흡의 관계를 비유적으로 설명하고 싶다. @에 들어갈 설명을 쓰시오.
- [7-2] ⑤에 대한 대한이의 궁금증을 해결해 주기 위한 실험을 설계하려고 한다. 실험 장치를 간단히 그리고, 그렇게 설계한 이유를 설명하시오. (단, 가정이나 학교에서 쉽게 구할 수 있는 재료와 기구를 사용한다.)

문항번호 [8]

정밀한 측정 기구라도 정확하지 않을 수 있기 때문에 측정값을 그대로 과학 연구에 사용하기는 어렵다. 따라서 과학자들은 불확실성을 제거하여 정확한 측정값을 얻기 위해 다양한 노력을 기울인다. 다음은 이러한 과정을 알아보기 위한 탐구이다.

<준비물> 단열이 되지 않는 큰 물통에 하루 동안 받아둔 물, 동일한 크기의 3칸×3칸 칸막이 수조 1개, 백열등 9개, 온도계 9개

<탐구 과정>

[실험 1]


- (1-가) 물통의 물을 수조의 각 칸마다 적당량씩 붓는다. 이때 각 칸에 담긴 물의 높이가 조금씩 달라도 관계 없다.
- (1-나) 수조의 각 칸마다 온도계를 하나씩 배정하여 설치한다. 이때 <그림 5>와 같이 수조 각 칸의 중심과 온도계의 위치를 맞추고, 모든 온도계가 수조 바닥으로부터 동일한 거리만큼 떨어져 있으면서 온도 측정부는 물에 완전히 잠기도록 설치한다. 온도계가 물의 온도를 지시할 때까지 기다린 후 각 온도계의 눈금을 읽는다.
- (1-다) 수조 각 칸의 아래에 백열등을 하나씩 배치한다. 이때 <그림 5>와 같이 수조 각 칸의 중심과 백열등의 위치를 맞추고, 수조와 각 백열등 사이의 거리는 동일하게 한다. 모든 백열등을 동시에 켜고, 2분마다 온도계 눈금을 읽어 기록한다.

(2-가) 수조에 있던 물을 완전히 비우고 [실험 1]을 반복한다. 이때 (1-가) 과정에서 각 칸의 물의 높이가 완전히 동일해지도록 조정한 다음 실험을 진행한다.

(3-가) 수조에 있던 물을 완전히 비우고 [실험 1]을 반복한다. 이때 (1-가) 과정에서 각 칸의 <u>물의 높이가</u> <u>완전히 동일해지도록 조정</u>하고, (1-다) 과정에서 백열등의 배치 순서를 임의로 바꾼 다음 실험을 진행한다. 이때 수조 각 칸의 중심과 백열등의 위치를 맞추고, 수조와 각 백열등 사이의 거리는 동일하게 한다.

<탐구 결과>

	7				온도계 측정값(<i>T</i>)(°C)							
101	백열등 켜기 전 $T_{0 rac{1}{2}}$				백열등 켠 후							7
170				T ₂ ₺			T_4 분			$T_{6^{rac{10}{4L}}}$		
15	15.0	14.9	15.0	16.8	16.9	15.9	18.6	18.9	16.8	20.4	20.9	17.7
[실험 1]	14.9	15.0	15.1	15.9	17.3	17.1	16.9	19.6	19.1	17.9	21.9	21.1
	15.0	15.0	15.1	16.8	16.0	17.8	18.6	17.0	20.5	20.4	18.0	23.2
	15.0	14.9	15.0	16.8	16.9	16.8	18.6	18.9	18.6	20.4	20.9	20.4
[실험 2]	14.9	15.0	15.1	16.9	17.3	17.1	18.9	19.6	19.1	20.9	21.9	21.1
	15.0	15.0	15.1	16.8	17.0	16.9	18.6	19.0	18.7	20.4	21.0	20.5
	15.0	14.9	15.0	16.8	16.9	16.8	18.6	18.9	18.6	20.4	20.9	20.4
[실험 3]	14.9	15.0	15.1	16.9	17.3	17.1	18.9	19.6	19.1	20.9	21.9	21.1
	15.0	15.0	15.1	16.8	17.0	16.9	18.6	19.0	18.7	20.4	21.0	20.5

<결과 분석> 측정 간격(2분 간격)마다 온도계 측정값의 변화량을 구하여 표로 작성한다.

	온도계 측정값 변화량 (℃)									
	T_2	분 - 7	r 0분	T_4	_분 — 7	5 2분	T_{6} 분 $-T_{4}$ 분			
	1.8	2.0	0.9	1.8	2.0	0.9				
[실험 1]	1.0	2.3	2.0	1.0	2.3	2.0				
	1.8	1.0	2.7	1.8	1.0	2.7				

		온도계 측정값 변화량 (℃)										
	T_2	_분 — 7	r ₀ 분	T_4 분 $-T_2$ 분			T _{6분} - T _{4분}					
	1.8	2.0	1.8	1.8	2.0	1.8						
[실험 2]	2.0	2.3	2.0	2.0	2.3	2.0						
	1.8	2.0	1.8	1.8	2.0	1.8						

<탐구 결과>를 바탕으로 아래의 질문에 답하시오. (단, 온도계 눈금을 읽는 데 걸린 시간은 무시하며, 온도계 눈금은 모두 정확하게 읽었고, 온도계의 위치는 바꾸지 않았다. 물을 붓는 과정에서의 온도 변화, 수조의 재질이나 특성, 온도계의 크기, 백열등의 크기는 이 실험에 영향을 미치지 않는다고 가정한다.)

- [8-1] [실험 1]과 [실험 2]에서 온도계 측정값 변화량을 구하여 빈칸을 채우시오.
- [8-2] [실험 1], [실험 2], [실험 3]에서 백열등을 켜기 전(0분)의 측정값이 수조의 각 칸마다 균일하게 나타나지 않은 이유에 대해 추론하시오.
- [8-3] [실험 2]와 [실험 3]의 과정과 결과를 비교하고, 이를 통해 알아낼 수 있는 점이 무엇인지 추론하시오.
- [8-4] <결과 분석>에서 [실험 2]의 측정값 변화량 배열에 어떤 특징 및 경향이 나타나는지 쓰고, 그 이유가 무엇일지 과학적으로 설명하시오.
- [8-5] <결과 분석>에서 [실험 1]의 측정값 변화량 배열이 [8-4]에서 답한 특징 및 경향과 비교하여 어떤 공통점과 차이점이 있는지 지적하고, 두 실험 과정 간의 차이를 비교하여 [실험 1]의 결과를 해석하시오.
- [8-6] [실험 2]에서 백열등을 켠 후 80분이 지났을 때도 [8-4]에서 답한 측정<mark>값 변화</mark>량 배열의 특징 및 경향을 따를 것인지 추론해 보고, 그렇게 생각한 이유에 대해 과학적으로 설명하시오.
- [8-7] 이 탐구에서 사용된 물의 백열등을 켜기 전(0분) 정확한 온도를 결정할 수 있는 실험 방법을 1가지 제안하고, 가능성 있는 결과 1가지와 이에 대한 해석을 제시하시오. (단, 아래의 준비물만을 활용해야 한다.)

<준비물>

비커 1개

이 탐구에서 백열등을 켜기 전(0분)에 **15.1 °C** 를 가리킨 온도계 1개 이 탐구에 사용된 물통과 물 충분한 양의 얼음